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Multi-UAV Mobile Edge Computing and Path
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Abstract—Unmanned Aerial vehicles (UAVs) are widely used as
network processors in mobile networks, but more recently, UAVs
have been used in Mobile Edge Computing as mobile servers.
However, there are significant challenges to use UAVs in complex
environments with obstacles and cooperation between UAVs. We
introduce a new multi-UAV Mobile Edge Computing platform,
which aims to provide better Quality-of-Service and path plan-
ning based on reinforcement learning to address these issues. The
contributions of our work include: 1) optimizing the quality of
service for mobile edge computing and path planning in the same
reinforcement learning framework; 2) using a sigmoid-like function
to depict the terminal users’ demand to ensure a higher quality of
service; 3) applying synthetic considerations of the terminal users’
demand, risk and geometric distance in reinforcement learning re-
ward matrix to ensure the quality of service, risk avoidance, and the
cost-savings. Simulations have shown the effectiveness and feasibil-
ity of our platform, which can help advance related researches. The
source code can be found at https://github.com/bczhangbczhang.

Index Terms—Unmanned Aerial Vehicle, Mobile Edge
Computing, Path Planning, Reinforcement Learning.

I. INTRODUCTION

MOBILE data processing technology is experiencing a
growing demand in the communication market. New

technologies like 5 G are emerging to accelerate its development.
However, the demands of terminal users in uncertain environ-
ments and extreme situations have never been perfectly satisfied
as the calculations and services are often hard to reach from base
stations. As a result, mobile edge computing comes out as one
of the fastest-growing topics in telecommunications in the past
few decades [1].

Mobile edge computing is a concept that integrates the ca-
pabilities of the network, computing, storage, and intelligence
services on the edge of the network physically close to the data
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source. In a typical mobile edge computing scenario, terminal
users are served by edge servers with high computing power [2],
[3]. The effectiveness of mobile edge computing is measured by
the Quality of Service (QoS) of each terminal user. The higher
the QoS, the more efficient a terminal user’s demand is satisfied
or served.

Unmanned Aerial Vehicles (UAVs) have become ideal servers
for mobile edge computing that assures QoS, improving sta-
bility, reliability, and calculating efficiency through research
and development investment [4]–[6]. They are also flexible
and cost-effective due to their small size [7], [8]. Therefore, a
UAV can move flexibly from terminal user to terminal user and
conduct highly efficient calculating services to improve QoS.

UAV-mounted mobile edge computing remains challenging
due to the complexity of the working environment, the uncer-
tainty of the distribution of terminal users, and the limitations
of the UAV’s energy [1]. Therefore, path planning plays an
indispensable role when using UAVs for mobile edge computing
to handle these issues. For example, [9] proposed a multi-agent
algorithm to determine the optimal path of UAVs based on
Q-learning. An echo state network (ESN) based prediction al-
gorithm is also proposed for predicting the future movement of
terminal users. Liu et al. [10] built a model to evaluate QoS
and proposed an algorithm to maximize the reward during the
planning process.

However, most of the existing research focuses on finding the
optimal path under a specified mission or treating the planning
process as a simple greedy strategy without a continuously
improving process. This prevents the UAVs adaption to the
changing environment, and the planning can easily fall into a
local optimum. Furthermore, previous works on UAV-mounted
mobile edge computing seldom consider risk avoidance or colli-
sions between UAVs as this is impractical in real environments.

To find an adaptive global optimum solution for different
tasks, [11], [12] proves that Reinforcement Learning (RL) is
effective. [13] dramatically improved QoS by introducing RL
and regards the path planning problem as an optimization prob-
lem with constraints from the environment. Compared with
traditional path planning methods such as the A* algorithm and
RRT, RL is more flexible for the following reasons: 1) In the
mobile edge computing scenario, the terminal user’s residual
demand dynamically changes, which requires real-time policy
updating. However, traditional methods cannot work efficiently
in such time-varying scenarios; 2) There are both obstacles and
terminal users on the map, which requires not only obstacle
avoidance but also task allocation, and thus it is difficult for
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those algorithms that only consider geometrical constraints to
handle this issue; 3) In RL, elements in the environment can be
depicted uniformly by the cost function, thus making it possible
to flexibly adjust the policies by changing coefficients in the cost
function according to different mission’ needs. As a result, RL
is more adaptive to various scenarios and is more suitable to be
a base for building the mobile edge computing platform.

Motivated by the reasons mentioned above, we propose a
platform to advance research in UAV-mounted mobile edge
computing by building a unified framework with path planning
algorithms based on RL. The main contributions of this paper
are summarized as follows:
� First, we provide a novel framework in which UAV-

mounted mobile edge computing and path planning are
combined based on RL by considering the geometric dis-
tance, risk, and terminal users’ demand in a single cost
matrix.

� Second, we investigate multi-UAV collaboration in the
mobile edge computing scenario. Geometric and terminal
user’s information are shared among UAVs, thus ensuring
cost-saving and obstacle avoidance.

� Third, we introduce an efficient way of depicting the termi-
nal users’ demand for achieving a higher QoS. Compared
with the traditional linear demand function, the sigmoid-
like function enables better task allocation.

� Fourth, we perform extensive experiments to test the pro-
posed platform and evaluate different coefficients in the
cost function. Results have shown the effectiveness and
feasibility of our approach.

The rest of this paper is organized as follows. First, related
work is presented in Section II. Then in Section III, we provide
a detailed description of the UAV-mounted mobile edge com-
puting platform. Finally, the effectiveness and feasibility of the
proposed platform are validated by simulations in Section IV,
and conclusions are presented in Section V.

II. RELATED WORK

We conduct our literature review to cover mobile edge com-
puting, path planning, and their combination.

A. Mobile Edge Computing

Mobile edge computing has attracted increased interest and
is becoming one of the hottest topics in edge computing. For
example, [14] develops a taxonomy of mobile edge computing
applications and use cases. In addition, there some representative
reviews: [1] presents related concepts and technologies, archi-
tectures, advantages, and typical scenarios of mobile edge com-
puting, [3] explains architecture and computation offloading,
and [2] investigates mobile edge computing communications.
These works demonstrate the potential of this field.

While the concept of mobile edge computing has been seen
in the literature before, it remains an open problem. According
to [3], the distribution and management of mobile edge com-
puting resources is a key requirement for ensuring the QoS
of terminal users. When servers are moving dynamically, the
system benefits from flexibility but at the same time becomes

more complicated, which deteriorates the incapability of most
arrangement methods.

B. Path Planning

Kim et al. [15] introduce a path planning algorithm for
dynamic environments where small UAVs are used as relay
nodes in a network of naval vessels. The motion estimates
of the vessels and the states of the UAVs are taken as input
to generalize the strategy. Instead of optimizing a centralized
system, the approach exploits a fully decentralized non-linear
model predictive control concept. To emphasize the coopera-
tion between UAVs, Zhang et al. [16] propose the Cooperative
and Geometric Learning Algorithm (CGLA) designed for path
planning based on the cooperation of multiple UAVs. CGLA
introduces a weight matrix based on geometric distance and
integral risk information to guide the movement of UAVs. The
weight matrix can be efficiently calculated and updated, making
the system lighter than systems based on methods such as neural
networks and guarantees real-time path planning. We note that
there is a relatively low requirement for computing power in
CGLA reinforcement learning, and this makes it a suitable
approach for UAV-mounted mobile edge computing.

C. Combination of Mobile Edge Computing and Path
Planning

Previous works introduce successive convex approximation
(SCA) to combine mobile edge computing and path planning.
Jeong et al. [17] leverage SCA strategies to calculate the path of
UAVs under latency and UAV’s energy budget constraints. [18]
investigates a scenario where the UAV offloads its computation
tasks to multiple ground stations along its trajectory. The authors
exploit alternating optimization and SCA techniques to design
the UAVs trajectory to minimize the mission completion time.
However, these works do not involve a cooperative mechanism
between UAVs. In addition, these approaches have a limitation
when the environment is unknown in advance. The learning-
based algorithms also attract the attention of path planning
in UAV-mounted mobile edge computing. For example, [19]
investigates a joint task scheduling and resource allocation ap-
proach in a space-air-ground integrated network based on policy
gradients and actor-critic methods. [20] applies a deterministic
policy gradient algorithm to maximize the uplink sum rate in the
UAV-aided cellular network with multiple ground users.

Inspired by these works, we provide an organic combination
of mobile edge computing and path planning by building an
open-source platform for the UAV-mounted mobile edge com-
puting networks. Simulation results have shown the feasibility
and flexibility of our platform.

III. MULTI-UAV MOBILE EDGE COMPUTING AND PATH

PLANNING BASED ON REINFORCEMENT LEARNING

In reinforcement learning, the agent’s goal is to find an optimal
strategy under each scenario to obtain the maximum expected
reward. In our platform, the mobile network processor UAV is
the agent who constantly learns from the environment. At each
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time slot, a UAV chooses a planning strategy to achieve the
best possible reward according to its surroundings. After the
UAV moves, the surrounding changes and positive or negative
feedback is provided to the UAV in the form of a reward matrixA
given the factors of risk, geometric distance, and terminal users’
demand. The UAV then learns from the surroundings through a
stochastic iterative cost matrix G generated from A and selects
a strategy—a path toward the target. G can be considered as
the memory of each agent, which is intensified and “trained”
through each episode of the planning process.

A. Environment Modeling

This paper considers the UAV’s collision avoidance and ter-
minal users’ demand on the same platform. The surroundings
contain two basic elements of obstacles and terminal users. First,
obstacles vary in shape, positions, and risk levels, which include
buildings, cars, or mountains in a real environment. Second, we
assume the obstacles comply with a Gaussian distribution but
have different variances σ used to calculate their risk exposure
probability.

Forn independent obstacles in the map, giving the ith obstacle
position Oi = (Xi, Yi), the risk ri(x, y) indicates the risk from
Oi at the point (x, y) and can be defined as

ri(x, y) =
1√
2πσ

e−
d2

2σ , d =
√

(x−Xi)2 + (y − Yi)2,

i ∈ {1, 2, . . . , n} . (1)

Considering all n obstacles in the map, the overall risk to
a point (x, y) in the risk exposure probability matrix can be
described as

R(x, y) = 1−
n∏

i=1

[1− ri(x, y)]. (2)

The exposed risk from any point p to any point q on the map is
the integral risk of R(x, y) for any (x, y) on C, where C is the
linear path from p to q:∫

(x,y)∈C
R(x, y). (3)

Second, for serving terminal users, we assume that each
terminal user has an initial demand d0j for the UAVs to process.
We also assume the demand can only be served by UAVs within
a constant service radius because the UAVs have limited capa-
bility for detecting demand signals beyond a certain distance.
Therefore, the service area is denoted s(pj , ε), where pj is the
position ofTUj , and ε is the service radius, as shown in Figure 1.

When a UAV enters the service range of TUj , the service for
TUj begins. The remaining demand of TUj will decrease at
a constant speed τ per unit time per UAV. We can easily infer
that a terminal user with a greater demand needs more time to
be served, and the longer a UAV remains in the service range
of TUj , the more service can be provided for TUj . dj changes
over time tk time served by UAVk as

dl+1
j = dlj − τtk. (4)

Fig. 1. Obstacles risk and terminal users demand map (ε = 0.2).

The correlation between the terminal users’ demand and
UAVs’ demand detection should have a non-linear relationship
to improve system performance. With reference to [10] and [21],
a sigmoid-like function can help enhance strong signals and
abate weak signals. Thus, we adopt a sigmoid-like demand
detection function U(dj) ∈ (0, 1] to describe the correlation
between real demand and detected demand as

U(dj) = 1− exp

[
− (dj)

η

dj + β

]
, (5)

where η and β are controlling variables.
From Figure 2(a), U(dj) first increases steeply as the demand

rises and becomes steady when the demand is sufficiently great.
Thus, (5) can encourage a UAV to focus on terminal users
with greater unserved demand and prevent it from serving any
terminal user over a long time, thus improving QoS.

Generally, a Sigmoid-like function is an increasing function
with an inflection point x0, which follows d2f(x)

dx2 > 0 when x <

x0 and d2f(x)
dx2 < 0 when x > x0 [21]. Functions with such form

satisfy the following properties:
Property 1: For any x > 0 in U(x), the function is valid only

when
η ∈ (1,∞),
β ∈ (0,∞)
The proof is given in Proof 1 in the appendix.
Property 2: η controls the slope and centrality of the curve,

pivots through an inflection point (1, 1− e−
1

1+β ). β controls the
horizontal movement of the curve. As a result, the intersection
point can be moved vertically by changing β.

The proof is given in Proof 2 in the appendix.
As shown in Figure 2(b), U(x) has an inflection point when

x = 1. The curve becomes steeper when η increases and moves
vertically downward when β increases. Therefore, η and β
are constant variables that affect QoS. The evidence will be
provided in part IV.

To simplify the model, we assume the demands are linearly
accumulated. For a UAV at a point p in the map, with a detection
range ε, the detected demand is the linear accumulation of
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Fig. 2. Examples of normalized sigmoid demand functions.

terminal users’ demand within circle area s(p, ε):

∑
j∈s(p,ε)

U(dj). (6)

B. The Reward Matrix

A reward matrix is introduced for UAVs to learn and adapt to
find the optimal path. The reward matrix is designed to measure
the reward or punishment from any point towards any other
points on the map given the factors of risk, geometric distance,
and terminal users demand.

In our platform, the map is represented as a lattice of N ×N ,
and the reward Api,pr

between any point pi and pr in the map
is defined as

Api,pr
= dpi,pr

+K

∫
C

R(x, y)ds+
M

1 +
∑

j∈s(pi,ε)
U(dj)

,

(7)

where dpi,pr
is the geometric distance between pi and pr.

The second term in the equation denotes the risk detected
from pi to pr or vice versa, which means the larger the risk
detected, the larger the cost or punishment. The last term in the

Fig. 3. Observed risk distribution (R = 0.2).

Fig. 4. Weight matrix on point (0.5,0.5).

equation is the overall demand detected at pi, as pi is the current
position of UAV. The larger the demand detected, the smaller
the punishment, or the larger the reward.

For each point pr, r ∈ {1, 2, . . . , N2} in the map, a reward
matrix Apr

consists of points Api,pr
, i ∈ {1, 2, . . . , N2} is gen-

erated with regard to all points pi on the map. K and M reflect
the tolerance of risk and priority of service, which affects the
strategy for path planning. When applied in real situations, K
and M can be adjusted according to the mission’s requirements.
For instance, if K is set to a relatively high value, the UAVs
will tend to stay away from obstacles even though this leads to
a longer path length.

An obstacle observation radius is introduced for each UAV to
fit real situations. When an obstacle enters the observed area of a
UAV, the UAV detects the obstacle and obtains risk information.
Only the observed obstacles will count as a risk when calculating
the weight matrix. The highlighted color in Figure 3 shows the
observed risk calculated by (1) and (2) for a UAV in position P
with an observation radius R.

Figure 4 (a), (b) shows the reward matrix on point [0.5,0.5]
based on each UAV’s observed risk distribution in Figure 3
and the overall terminal user’s demand. According to (7), the
terminal user’s demand decreases the cost, and the observed
risk adds the cost. In Figure 4, we can infer that places with
more terminal user demand have lower values (dark color), and
those with more obstacles have higher values (light color).

C. Cost Matrix

During the path planning process, a cost matrix G is intro-
duced for a UAV to obtain a preliminary optimal path to the
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destination. The generation of the cost matrix is obtained using
an iterative process. After several iterations, the cost matrix will
converge [16] and remain steady. The update mechanism of the
cost matrix in a map with N ×N computing nodes is described
as:

1) Initialize G: initialize the cost matrix G0. Assign
the value 0 to the target point and the value∞ to all other
points.

2) Update the cost matrix G. Randomly choose a position pr
from the map. For each point pi in the map, update the
point value in G by comparing the current value with the
revised value considering the reward matrix:

Gk+1
pi

= min
{
Gk

pi
, Api,pr

+Gk
pr

}
,

i, r ∈ {
1, 2, . . . , N2

}
. (8)

3) Repeat step 2) until reaching the maximum number of
iterations.

After G is produced, an ordinal sequence of points is gener-
ated as a preliminary Path for the UAV to follow. Each UAV
has its ownPath. Points with the lowest cost inG are constantly
added. The generation of Path is described as follows:

1) Initialize Path as an empty list.
2) Add pi with the lowest value in G to Path, then assign

Gpi
to∞.

3) Repeat step 2) until reaching the target point or reaching
a maximum length.

We note that the elements in Path are in ascending order of
cost. The process of calculatingG and generatingPath together
form the function Planning in Algorithm 1.

D. UAVs Movement

Each UAV is considered an agent in the RL process. They
are therefore assigned a memory Di and a cost matrix Gi. Di

stores map information and serves as the “eyes” and memory of
the agent, and Gi serves as the “brain” of the agent. The agent
produces a learned result Pathi to complete each episode. All
UAVs in the system move in sequence to realize information
sharing. This can result in a slight time delay in real situations.
When one UAV moves, the other UAVs would be treated as
obstacles. Algorithm 1 describes the process. For the ith UAV
(UAVi), after moving one step according toPathi,ScanEnv is
performed. In ScanEnv, UAVi scans the circle area s(posi, R)
whereR is the observation radius. This is used to decide whether
further planning is needed. If new obstacles, including other
UAVs, are observed, ObstacleFound will be set to True, and
memory Di will be updated. Then, the weight matrix and Gi

will be altered, and Pathi will be recalculated. If the surround-
ings remain unchanged, UAVi continues to Move according
to Pathi. In Move, UAVi moves a distance of StepLength
along the direction of the vector starting from posi and ending
atPathi[1], if the distance between posi andPathi[1] is smaller
than StepLength, the UAV will move directly to Pathi[1].
Move returns the new position of UAVi. At the end of one
loop, the remaining demands of all TUs within the service area
of UAVi are updated according to (4).

Algorithm 1: UAV Movement Algorithm.
1: for i in UAV num do
2: Initialize G(i)
3: Pathi ← Planning()
4: end for
5: for i in UAV num do
6: if posi = TargetPoint then
7: Stopmovement(i)
8: else
9: // Remove outdated information from Di because

posj has changed in last loop
10: for j in UAV num and j! = i do
11: delete posj from memory Di

12: end for
13: ObstacleFound← ScanEnv(posi, R)
14: if ObstacleFound then
15: Pathi ← Planning()
16: end if
17: if posi = Pathi[1] then
18: Pathi ← Pathi[2. . .end]
19: end if
20: posi ← Move(StepLength, Pathi[1])
21: for TUj within s(posi, ε) do
22: dj ← dj − τ
23: end for
24: end if
25: end for

IV. SIMULATION AND DISCUSSION

This section first illustrates the UAV dynamic planning pro-
cess and discusses the influence of the parameters K and M
in (7) on the planning results. Second, we demonstrate the effi-
ciency of the sigmoid demand function (4) by comparing it with a
linear demand function. Finally, we compare our algorithm with
a commonly used algorithm A*, which shows that our planning
algorithms achieve a much better result in terms of QoS.

To demonstrate our algorithm, we have made several simpli-
fying assumptions:
� The site is abstracted to grids so that objects, including

obstacles, terminal users, and UAVs, are aligned with the
grid.

� All object information is stored in databases for UAVs to
‘scan,’ while in real situations, the scanning process could
be realized by perception algorithms based on sensors like
cameras or radars.

� The variation in speed is realized through adjusting
StepLength. In our proposed algorithm, each UAV takes
1 unit of time to move one StepLength. If the distance
between a UAV’s current position and its planned position
is smaller than StepLength, the UAV will move to the
planned position instead of moving one StepLength. In
practical situations, the calculation distance in a map could
be set to smaller than one StepLength, which would
require speed variations. However, we are assuming a
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Fig. 5. Simulation of UAV-mounted mobile edge computing based on pro-
posed path planning platform.

2D planning scenario. The altitude of the UAV in a 3D
environment is not considered.

A. Path Planning for Multiple UAVs

In this simulation, we set K = 20, M = 1, η = 2, β = 8,
ε, R = 0.2. K,M is decided by users of the platform with
different needs, while other parameters are determined by prac-
tical conditions and the UAVs’ capabilities. Ten obstacles are
given random positions with random variances σi > 0, i =
0, 1, 2, . . . , 10. Six terminal users are assigned random demands
dj ∈ [0, 10], j = 0, 1, 2, . . . , 6. In a real situation, the terminal
user’s demand could be a real-time variable.

The planning process of the three UAVs is shown in Figure 5.
Note that:
� The point with the black cross marks the target point for all

UAVs. All UAVs are tasked to deliver service to terminal
users on the map and fly to the target point for each mission.

� The red dots show the existence and the amount of the
terminal users’ demand with a service radius ε. The red dots
shrink while terminal users are being served, representing

Fig. 6. Planning results with different M (K = 5).

a reduction in the remaining demand. As can be seen from
the overlap area of the service radius, the demands are
cumulative.

From Figure 5, we can infer that UAVs can choose a low-
risk path to serve each terminal user in a complex environment
based on our platform. Terminal users with higher demand are
more attractive to UAVs. After the demand is reduced, UAVs
will change direction for other demand-high areas. Meanwhile,
information sharing is effective in avoiding collisions between
UAVs during planning.

B. The Evaluation of M

The parameter M decides the priority of serving the terminal
users and therefore controls the QoS. As shown in Figure 6,
given a fixed K, in the scenarios with larger M , UAVs are prone
to meet more terminal users demands but take more risk and
sacrifice path length (i.e., energy) to do so. On the contrary,
UAVs in the scenarios with smaller M fail to serve all terminal
users but save more energy on a shorter path.

The same results are also obtained by numerical simulation.
To compare the service rate, we define

QoS = 1−
∑m

j=1 dj∑m
j=1 d

0
j

. (9)

As shown in Figure 7, when M increases, QoS and average
risk increase accordingly.

By changing M , our platform can meet the requirements of
different missions with different service needs. QoS and risk
can be flexibly balanced.
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Fig. 7. Planning result measurements with different M (K = 5).

Fig. 8. Planning results with different K (M = 0.2).

C. The Evaluation of K

Similar to parameter M , altering the parameter K can make
the algorithm more flexible in different environments. K con-
trols the tolerance of risk. UAVs set with higher K in the
result tend to sacrifice energy cost to avoid risk and thereby
influenceQoS. Figure 8 compares the path planning results with
different K. When K increases, a higher risk avoidance strategy
is adopted, and the UAV follows a path to avoid obstacles at
all costs instead of flying through narrow tunnels to serve the
terminal users.

Numerical results are shown in Figure 9 to better illustrate the
algorithm. When K increases, path length and path risk move
in opposite directions.

Fig. 9. Planning results measurements with changing K (M = 0.5).

Fig. 10. QoS comparison using sigmoid or linear demand function (K = 10).

D. Comparison of the Sigmoid Demand Function and Linear
Demand Function

According to [10], a sigmoid processed demand can im-
prove system performance. To verify the effectiveness of (5),
we performed experiments separately with the sigmoid de-
mand function

∑
j∈s(p,ε) U(dj) and the linear demand function∑

j∈s(p,ε) dj where dj ∈ [0, 1]. Results show that the former
gives higher QoS with the same experimental conditions and
leads to higher service speed with the same QoS. Figure 10
shows that the sigmoid demand function assures a higher QoS
than the linear demand function.

Table I compares the service completion time of each terminal
user with the two schemes. Accordingly, the sigmoid demand
function leads to a higher terminal user service speed with the
same QoS. This is because U(dj) > dj in the early period, as
shown in (7) and (8). The UAVs are attracted to the terminal
users earlier and thus finish the service more quickly.

E. Comparison of Our Algorithm With the A* Algorithm

The A* algorithm is widely used as a baseline in various path
planning scenarios. We compare our proposed algorithm with
A* in the multiple UAV mobile edge computing environment.
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TABLE I
SERVICE SPEED COMPARISON USING SIGMOID OR LINEAR DEMAND FUNCTION

TABLE II
RESULTS COMPARISON WITH DIFFERENT M OF THE PROPOSED ALGORITHM AND THE A* ALGORITHM (K = 2)

TABLE III
RESULTS COMPARISON WITH DIFFERENT K OF THE PROPOSED ALGORITHM AND A* ALGORITHM (M = 0.5)

Based on the A* algorithm, at each step of path planning,
a UAV can choose among one of a fixed number of equally
distributed directions to move one unit step. In our experiments,
we set up eight directions for UAVs and thus have eight candidate
nodes pi for a UAV to choose at each step. Considering the path
length and risk as a cost and the demand of the terminal users
as a reward, we formulate the weight function Fi at each point
pi in the A* algorithm as

Fi = dpi,pt
+KRpi

+
M

1 +
∑

j∈s(pi,ε)
U(dj)

,

i = 1, 2, . . . , 7, 8, (10)

where dpi,pt
is the Euclidean distance between candidate point

pi and the target point pt. Rpi
and U(dj) are defined in the

previous equations.
In general, Figure 10 shows the A* algorithm fails to perform

effective service when terminal users are surrounded by obsta-
cles. However, with the proposed algorithm (Figure 12(b)), the
UAVs manage to serve the terminal users while avoiding risk.
QoS is the most important index in a mobile edge computing

mission. As shown in Table II and Table III, the proposed algo-
rithm can achieve a higher QoS compared to the A* algorithm.
Furthermore, our algorithm can react flexibly to the change of
K and M , thus adjust priorities to path length and average risk
while assuring QoS. For example, with the proposed algorithm

Fig. 11. Results comparison using linear or sigmoid demand function (K =
10,M = 0.12).

(K = 50,M = 0.5), all three indices are better than using the
A* algorithm (K = 0.5,M = 0.5).

A deadlock means that the mission can never come to an end
because one or more UAVs are stuck in the current surrounding
and loop infinitely. Our experiments show that the A* algorithm
can easily fall into a deadlock with parameter K above a certain
level. The results are illustrated in Table III and Figure 13.

Based on the above comparisons, our RL platform performs
better not only on environment adaptation and high QoS as-
surance but also on algorithm reliability and high mission
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Fig. 12. Comparison of RL and A* algorithm (K = 5,M = 0.5).

Fig. 13. The deadlock of the A* algorithm (K = 1,M = 0.2).

completeness. The effectiveness and feasibility of our method
are clear.

V. CONCLUSION

This paper develops the first multi-UAV mobile edge comput-
ing and path planning platform where UAVs serve terminal users
as mobile network processors based on reinforcement learning.
We implemented our platform with 1) a Quality-of-Service
(QoS) for each terminal user, 2) maximum collision avoidance
with minimum risk, and 3) cooperation between UAVs. The
simulations and experiments are provided to show the efficiency
and usability of the platform, which can be a useful baseline for
mobile edge computing.

APPENDIX

Proof: 1 According to Property 1, for any x > 0 in U(x),

dU

dx
=

xη−1e−
xη

x+β

(x+ β)2
[(η − 1)x+ ηβ] > 0, (11)

1− e−
xη

x+β > 0. (12)

then we have

(η − 1)x+ ηβ > 0, (13)

xη

x+ β
> 0. (14)

According to (14), because xη > 0, then for any x > 0, x+
β > 0, so β > 0. By (13), we have η > x

x+β > 0, then η > 0.

If η <= 1, then x <= ηβ
1−η , which contradicts the domain of

x, thus we have η > 1 �
Proof: 2 We have

dU

dη
=

lnxe−
xη

x+β

x+ β
xη, (15)

thus we have

dU

dη
< 0, x ∈ [0, 1), (16)

dU

dη
> 0, x > 1. (17)

It means as η increases, U(x) decreases when x < 1 and
increases when x > 1, and the slope of the curve increases ac-
cordingly. Whenx = 1, dU

dη = 0 for any η, it creates an inflection
point that is not affected by changing η.

We also have

dU

dβ
= −xηe−

xη

x+β

(x+ β)2
< 0, (18)

which means whenβ increases, the sigmoid demand curve drops
vertically to the inflection point. �
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