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Learning-Initialized Trajectory Planning in Unknown Environments
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Fig. 1.

A real-world demonstration of fully autonomous flight using the proposed Learning-Initialized Trajectory Planner (LIT-Planner). The

drone has no prior knowledge of the environment, and the entire software stack runs onboard in real-time. (a) Our quadrotor platform. (b) The map built
during the flight. (c1)-(c3) Three snapshots during the flight. (d1)-(d3) The corresponding depth images.

Abstract— Autonomous flight in unknown environments re-
quires precise planning for both the spatial and temporal
profiles of trajectories, which generally involves nonconvex
optimization, leading to high time costs and susceptibility to
local optima. To address these limitations, we introduce the
Learning-Initialized Trajectory Planner (LIT-Planner), a novel
approach that guides optimization using a Neural Network
(NN) Planner to provide initial values. We first leverage the
spatial-temporal optimization with batch sampling to generate
training cases, aiming to capture multimodality in trajectories.
Based on these data, the NN-Planner maps visual and inertial
observations to trajectory parameters for handling unknown
environments. The network outputs are then optimized to
enhance both reliability and explainability, ensuring robust per-
formance. Furthermore, we propose a framework that supports
robust online replanning with tolerance to planning latency.
Comprehensive simulations validate the LIT-Planner’s time
efficiency without compromising trajectory quality compared
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to optimization-based methods. Real-world experiments further
demonstrate its practical suitability for autonomous drone
navigation.

Video: https://youtu.be/VI5ZPjLziQI

I. INTRODUCTION

Spatial-temporal motion planning aims to generate
collision-free trajectories with refinement in both energy and
time. This has been a challenging problem for autonomous
drones in unknown environments because it is required to
precisely handle the complexity from both the environment
and the drone dynamics, while ensuring a real-time perfor-
mance for high-frequency replanning.

Optimization-based approaches [1]-[3] are considered as
one of the mainstream solutions, where the planning task
is formulated as an optimization problem that incorporates
different constraints and costs using one objective function.
However, the nonconvex nature of the optimization prob-
lem, owing to its high-dimensional variables and intricate
constraints, often results in convergence to local optima.
Furthermore, computational costs are highly sensitive to
the initial values used to initialize optimization [4], [5].
To provide a proper initial guess, a straightforward ap-
proach is to employ path planning methods such as A* [6]
or Rapidly-exploring Random Tree (RRT) [7] to generate
sparse waypoints for trajectory optimization. However, these
path planning methods do not consider drone dynamics,
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Fig. 2. System Overview. The LIT-Planner leverages a neural network to generate high-quality initial trajectories from onboard observations and
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subsequently conducts spatial-temporal optimization on the neural network’s output. The NN-Planner is trained using supervised learning, with training
cases provided by an expert planner based on a standard mapping-planning-control stack.

potentially resulting in unreasonable initial values for online
replanning. Additionally, the time required for these methods
makes them unsuitable for high-frequency replanning [8].
Another method involves the sampling of multiple initial
configurations, performing separate optimizations for each,
and retaining the best solution [9]. Nevertheless, this ap-
proach inevitably escalates planning costs linearly with the
number of initial configurations sampled, which is impracti-
cal for micro aerial robots with limited onboard computing
resources. Therefore, we need an approach to provide rea-
sonable trajectory initialization with minimal time cost.

On the other hand, learning-based approaches have gained
widespread attention in recent years due to the neural net-
work’s ability to model nonlinear mappings [10] and perform
fast inference [11]. Researchers have employed supervised
learning and reinforcement learning for various tasks, includ-
ing obstacle avoidance [12]-[14], flying in the wilderness
[15], formation flight [16], and autonomous racing [17], [18].
For instance, Tordesillas et al. [12] present a learning-based
method for perception-aware trajectory planning. However,
the proposed method assumes that the drone has perfect
knowledge of the obstacle’s trajectory, which leaves a gap for
real-world applications. Song et al. [13] perform hardware-
in-the-loop simulations on their learned policy, but the neural
network may experience failures, which requires an abrupt
takeover with a state-based controller. Loquercio et al. [15]
use a neural network to enable high-speed flight. However,
the method exhibits limited success rates in some cases
since the difficulties to ensure the trajectory’s temporal
consistency over a long time horizon. The challenge is then
how to generate reliable and explainable spatial-temporal
trajectories.

To address these limitations, we propose a learning-based

approach to initialize trajectories and further refine them
using an optimization approach. Several existing works have

employed neural networks to initialize trajectory optimiza-
tion for manipulator arms [4], [S] or mobile robots [19].
However, our research distinguishes itself from these studies
by the additional challenge of understanding unknown envi-
ronments in real time. In comparison to pure optimization-
based methods, our approach significantly reduces planning
time while maintaining trajectory quality. As opposed to end-
to-end learning-based methods, our approach benefits from
explainability due to the integration of optimization tech-
niques into the solution process. We outline the contributions
of this paper as follows:

o A Learning-Initialized Trajectory Planner (LIT-Planner)
that incorporates a Neural Network Planner into an
optimization-based approach to reduce planning cost
and provide explainable high-quality trajectories.

A robust online trajectory planning framework that

enables autonomous flight in unknown environments

with tolerance to planning latency.

o A set of simulations and real-world experiments validat-
ing the efficiency of our method compared to existing
approaches and demonstrating its feasibility for real-
world applications.

II. METHODOLOGY
A. System Overview

Fig. 2 shows an overview of the system. We first parame-
terize the trajectories using MINCO representation (Section
II-B), where a polynomial trajectory is completely defined by
the variables (Q,t). The LIT-Planner performs spatial (Q)-
temporal () optimization (Section II-C) on the trajectories
with initial values generated by a NN-Planner (Section II-
E). The NN-Planner is trained using supervised learning. We
leverage a powerful yet computational-expensive expert plan-
ner (Section II-D) to provide the training data. In addition,
we inroduce an online replanning framework in Section II-F.



B. Trajectory Parameterization

We denote scalars in regular x € R or X € R, vectors
in bold lowercase € R™, and matrices in bold uppercase
X € R™ ™ 1In addition, we denote the time variable in ¢,
time points in ¢;, time intervals in t; :=1t; —t;_1, and then
t; = > ;_, t;. The coordinate system contains the world
frame {W} (ENU: X East, Y North, Z Up) and the body
frame {B} (FLU: X Forward, Y Left, Z Up). The geometric
variables are in the world frame if not specifically annotated.

We represent a D-dimensional M -piece t-indexed poly-
nomial trajectory p(t) through MINCO [3], a polynomial
trajectory class to perform a spatial-temporal deformation of
the flat output trajectory [20]:

Tvinco = {p(t) : [0,tn] = RP | C =C(Q, %),
1
QGRDX(Mfl)’t€R>O}’ ( )
where C are trajectory coefficients, Q@ = [qy, -+ ,qp;_1]
represent the intermediate waypoints, £ = [fl, et M] " are

the time allocated for each piece, and tj; is the total time.
Given a set of (Q,t), we can obtain a unique trajectory
of minimum control effort in polynomial form through
the mapping C(-). This mapping is achieved by solving a
boundary-intermediate value problem described in [3], which
returns the coefficients C = [CT,--.,C7},]T with linear
time and space complexity. Based on (C, t), for a system of
S order integrator chain [3], a polynomial trajectory p(t) of
N =25 — 1 degree can be defined as

Py (t—1to), if t € [to,t1)
p(t) = qp; (t —ti_1), iftelti—,t) , @2
Py (t—thl), ifte [tM717tM)
pi(t)=C7 -B(t), Vte[0,L], 3)

where C; = [¢ci 1, - ,¢i.p| € RWHDXD js the coefficient
matrix of the i'" piece, B(t) := [1,t,- - ,tN]T € RN+ s
the natural basis.

Based on the above parameterization, MINCO’s objective

H(Q,t) can be computed as
H(Q.t) == K =K(C(Q,1),t). )

For any second-order continuous cost function K(C,¥),
we can compute OH/0Q and OH /Ot from OK/IC and
0K /Ot [3], and use gradient descent to optimize the ob-
jective.

C. Spatial-Temporal Optimization
We construct the trajectory problem in the form of uncon-

strained optimization:
= w. Ky, (5)
x

min £(C(Q,t

Q.t
where subscripts x = {e, t, 0, d} stands for Control Effort (e),
Trajectory Time (t), Obstacle Avoidance (0), and Dynamical
Feasibility (d). w, are the weights for different costs.

The cost function K, and its gradients are composed of
the cost and gradients of each trajectory piece:

M
K, =Y K., 6)
1=1
ok, [oriT ax2T  grMT]"
oC ~ |aC, 'aC, T aCy | )
0K, [oK! oK2  oKM]T )
Ot | oty Oty Oty

1) Control Effort K.: The control effort and its gradient
of the i*" piece trajectory can be written as

m:/“mww%u ©)
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2) Trajectory Time K;: We minimize the total time of
the trajectory K; = Zf\/ll The gradients are given by
5Kt/80 =0 and 8Kt/8t = 1M,1-

3) Obstacle Avoidance K, and Dynamical Feasibility K4:
The constraints for obstacle avoidance and dynamical feasi-
bility are time-integral constraints, which require sampling
on the trajectory to derive the associated penalties. We first
give the general form of time-integral constraints, then give
the specific forms of K, and K. For the i*" piece trajectory,
the penalty for violation of time-integral constraints can be
calculated as

-k 3
T — _ (12)

= ]E ;:O 75 - max (J’I‘ <Cutm ka) a0> )
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where © = {o,d}, k; is the number of points sam-
pled on the i piece trajectory, (Yo, Y1, " s Vki—1,Vk;) =
(1/2,1,---,1,1/2) are coefficients following the trapezoidal

rule [21]. The specific form of J,(-) is related to the type
of constraints, which will be discussed below. The gradients
can be calculated by

OK:  OK! dJ,
oc;  9J, 0C;’ (14
0Ky _ K, 0K, 0,0t as)
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To obtain K: and its gradients for different types of time
integral constraints, we just need to construct J, () for each
sampling point on the trajectory and calculate 9.J,/0C);
and 0.J, /0t . Obstacle avoidance constraints and dynamical
constraints are analyzed respectively below.

3.1) Obstacle Avoidance J,: We formulate the penalty
and its gradients using the Euclidean Signed Distance Fields
(ESDF). For every point on the map, the ESDF provides the
distance from this point to its nearest obstacle d(p(t')) and
the gradient Vd(p(t')). Thus, J,(p(t')) can be defined as

n Jdine —d(p(t')), if d(p(t') < dinr
To(p(t) = {0, i€ d(p(t) > duy
For J,(p(t')) > 0, the gradients can be calculated as
8Jo o / "\T
e = —B() - Vd(p(t)), (19)
0J, / -
e — V)" (). 0)

3.2) Dynamical Feasibility J4: Here we imply constraints
on the maximum velocity on the trajectory as an example,
the principle of acceleration and higher-order dynamical
constraints is the same. Assuming that the maximum allowed
velocity is v,,, we define

Ja=pt')? — vk, Q1)
8Jcl — 9+ . (+\T
TCZ- = Qﬁ(t ) p(t ) s (22)
oJ, .
&j =23(t"" - Ci - pt)T. (23)

So far, for the trajectory optimization problem (5), we
have presented detailed approaches to calculate the costs and
gradients. We use L-BFGS to solve the problem. To avoid
nonpositive values of ¢;, we introduce a proxy variable 7 and
modify #; as

zmaux - imin s

fi = - tminv

1=1,2,..., M.
14e 7

(24)
This establishes the mapping 7; € (—oo0,+0) — t; €
(fmins Emax)» Where Tiyax and Ty, are the upper and lower
bounds of the duration of the i*" piece trajectory that can be
set according to the users’ demand.

D. Expert Planner and Multimodality

To provide training data for the NN-Planner, we implement
an expert planner based on the optimization method [22]
presented in Section II-C. In each replanning of a flight,
it takes in the local initial state Sy = [pmit,'uim-t]T and
the target state Siuger [ Prargets Viarget] » samples  three
different initial trajectories (one straight line and two curves
that deform towards both sides based on the straight one),
performs optimization from each configuration, and outputs
the optimized result (Q*,%") with the lowest objective.

The objective function of the optimization problem is
not in an analytical form, which introduces a nonconvex
nature to this problem and significantly influences both the
solution process and the quality of the resultant solution.

(a) Case 1

(b) Case 2 (c) Case 3

Fig. 3. Illustration of the multimodality in three cases of local planning.
In each case, the optimization of expert planner starts from three different
initial trajectories and converages toward different results.

TABLE I: TRAJECTORY COST AND COMPUTATION TIME OF
OPTIMIZATION STARTING FROM DIFFERENT INITIAL VALUES

Trajectory Color

Case Metric

Yellow  Green  Blue

Case 1 Trajectory Cost 1291 1293 14.75
Computation Time (s) 0.44 0.27 0.49

Case 2 Trajectory Cost 10.87 26.62  10.83
Computation Time (s) 0.23 0.26 0.32

Case 3 Trajectory Cost 12.76 12.59  11.90

Computation Time (s) 0.25 0.40 0.36

This sensitivity to the initial optimization value is illustrated
in Fig. 3, and its influence on both the quality of results and
the computational cost of the solving process is quantified in
Table 1. These results intuitively demonstrate the necessity
of introducing a suitable initialization method.

E. Initialization: Neural Network Planner

To mitigate the influence of the aforementioned noncon-
vexity on trajectory optimization, the NN-Planner’s primary
purpose is to capture the potential high-quality trajectories
from raw sensory observations.

1) Structure: The NN-Planner takes in an observation

O = (17 Bvdronea %VRa BSinilv BSlarget)> (25)

where I € R640%480 jg the depth image, Bvgone € R is the
drone’s velocity in body frame, W R e R3*3 is the drone’s
attitude (rotation from body frame to world frame), B Sinit €
R?*3 and B S\yeec € R?*3 are the local initial state and target
state in body frame, respectively.

We have developed a neural network tailored for pro-
cessing the given observation and producing the output
(BQ,Bt). This observation encompasses both visual and
inertial information and is processed through two distinct
branches within the neural network, as illustrated in Fig.
2. For the visual information I, we utilize a pretrained
ResNet-18 [23] attached with a fully-connected layer to
generate the visual feature in R?4. In the case of the inertial
information (Pvarone, i R, B Sinit; ¥ Starger), we first flatten
each of these elements and concanate them to form a R**
vector. This vector is then processed by a four-layer per-
ceptron with [48, 24, 24] hidden nodes to extract the inertial
feature. Subsequently, the visual feature and inertial feature
are concatenated and passed through another four-layer-
perceptron with [48,96,96] hidden nodes to generate the



output vector. All multi-layer perceptrons employ the Leaky
ReLU activation function. Finally, the estimated (?Q, t)
are derived from the output vector and transformed into the
world frame.

2) Data Acquisition and Training: We train the NN-
Planner using supervised learning. We use the expert plan-
ner to collect training data in a self-built simulation envi-
ronment, where each planning operation yields a training
data entry comprising O and the corresponding reference
output (°Q*,Bt") from the expert planner. We train the
NN-Planner using Mean Squared Error (MSE) as the loss
function and Adam [24] as the optimizer.

FE. Online Replanning Framework

Autonomous flight in unknown environments requires
online replanning because of the limited perception horizon.
We design a robust online replanning framework that enables
tolerance to planning latency. Within this framework, the
planner maintains an evolving trajectory for the tracker to
follow, as outlined in Fig. 4.

In a replanning at time t,, the planner first selects the
local target state Siee and the local initial state Sinic. Starget
comprises a collision-free point p;,;, at a specific distance
ahead and a desired velocity viy;. For the local initial state,
the planner retrieves the state at ¢, + AT along the existing
trajectory as Sin,, where ATy is the foreseeing horizon.
The planner then generates a trajectory connecting them.
This newly generated trajectory supersedes the portion of the
existing trajectory beyond the time ¢, +ATY. After a interval
AT, comes the next round of replanning, and the existing
trajectory beyond the time t, + ATy 4+ AT, is updated. The
replanning interval AT, can be a constant value, typically
set as the upper bound of the estimated planning time, or
a variable value based on real-time measurements recorded
during each planning iteration.

This planning framework has two major advantages: 1)
Tolerance to planning latency: The tracker continually
accesses the real-time state of the trajectory, while the point
at which the trajectory is updated becomes accessible to the
tracker after the foreseeing horizon ATy. Consequently, as
long as the planning process can be completed within the

O Current state ~—== Generated before replanning (i)
. Local planning initial state s Generated by replanning (i)
O Local planning target state Generated by replanning (ii)

(i t=t, O/.\—-—O

t t, +AT, t(s)

X

(i)t =t, +AT,

t +AT, t,+AT, +AT, t(s)

Fig. 4. Illustration of two consecutive replanning within the online
replanning framework.

AT timeframe, the tracking operation proceeds seamlessly.
2) Decoupling between planning and control frequencies:
The tracking controller possesses the capability to publish
desired control commands at a very high frequency, inde-
pendent of the frequency at which the planner updates the
trajectory.

The feasibility of this framework is based on the following
assumption. In each planning, the portion of the newly
generated trajectory within the time window of AT is
dependable. This assumption remains reasonable, provided
that AT} is not excessively extended.

III. EXPERIMENTS

In this section, we present the results of both simulations
and real-world experiments to evaluate the performance of
our algorithm.

A. Simulations

We perform simulations in Gazebo with PX4 software-
in-the-loop (SITL). We build three different scenes (poles,
forest, and bricks) to perform simulations. In each scene,
the drone flies using onboard observations without prior
information about the environment. The network in LIT-
Planner is deployed with ONNX-Runtime. The trajectory
tracking controller accesses the planned trajectory to obtain
the desired commands of position, velocity, and acceleration.
The desired yaw angle, as an additional degree of freedom,
is set tangential to the trajectory for perception-awareness to
the environments. These desired commands are published to
the PX4 controller at a frequency of 60 Hz. The parameters
used for the algorithms are summarized in Table II.

1) The Effectiveness of Neural Network: To verify the
effectiveness of neural network for initialization, we conduct
comparisons between the expert planner and the LIT-Planner,
and evaluate the performance using the following two met-
rics: 1) Average replanning time: In each run, the drone
performs dozens of replannning. The average replanning time
is defined as the arithmetic mean of all replanning time
within one run. This metric reflects the computational cost
of the planner. 2) Weighted cost: In each run, we record the
state of drone every 0.5 seconds. The weighted cost consists
trajectory length, penalties for obstacle collision (from (12),
(13), (18)), and violations of dynamical feasibility (from
(12), (13), (21)). The weights between them are set to
[1,1,1]. This metric reflects the quality of the trajectory.

We conduct ten repeated experiments for both the expert
planner and the LIT-Planner in each scene. Fig. 6 presents
the comparison results, demonstrating that the LIT-Planner
achieves similar trajectory quality while significantly reduc-
ing replanning time in comparison to the expert planner.

TABLE II: MAIN PARAMETERS OF THE PLANNERS

Parameter Value Parameter Value

M 3 tmin 05s

D 2 tmax 50s

S 3 AT, 1.0 s

VUmax 1.0 m/s ATy 10s
dihy 0.7m  Weights between costs  [1,1,10000, 1]




(a) Poles

(b) Forest

(c) Bricks
Three scenes for simulation comparisions. In ‘Poles’ and ‘Forest’, the target point is located 30 meters ahead of the starting point, in ‘Bricks’,

TABLE III: TRACKING ERROR COMPARISIONS WITH AND WITHOUT THE
FORESEEING HORIZON

Average RMSE

Scene Metric

ATy =0s ATy =1s
Poles Position Error (m) 0.23 0.13
Velocity Error (m/s) 0.21 0.08
Forest Position Error (m) 0.28 0.16
) Velocity Error (m/s) 0.26 0.12
Bricks Position Error (m) 0.21 0.10
Velocity Error (m/s) 0.19 0.07

Fig. 5.
the target point is located 35 meters ahead of the starting point. The red curves show trajectories flown using LIT-Planner.
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(a) Weighted cost

Fig. 6. Comparison of the weighted cost and average replanning time.
LIT-Planner is able to generate trajectories of similar quality compared with
the expert planner, but with much less replanning time.

(b) Average replanning time

This underscores the effectiveness of the neural network in
providing reasonable initial trajectories.

2) Tolerance to Planning Latency: The proposed online
replanning framework (Section II-F) is designed to tolerate
planning latency owing to the foreseeing horizon AT%.
To validate its effectiveness, we intentionally introduce an
additional planning latency of 0.8 seconds and conduct ten
repeated comparisions with and without (AT = 0s) the
foreseeing horizon in the three scenes, respectively. In each
run, we record the desired position and velocity commands,
as well as the actual position and velocity of the drone
every 0.1 seconds, and calculate the root-mean-square track-
ing error from the recorded data. We present the average
RMSE of the ten experiments in Table III, which proves the
incorporation of AT} to be effective. In the absence of the
foreseeing horizon, the drone’s tracking performance falters,
as the current desired position may undergo abrupt changes,
making trajectory tracking more difficult, which is reflected
by a larger RMSE.

B. Real-World Experiments

For real-world experiments, we deploy the LIT-Planner on
a drone equipped with a NVIDIA Jetson Orin NX as com-
putational unit, an Intel RealSense D435 depth camera, and
a Holybro Kakute H7 mini flight controller. The drone runs
VINS-Fusion [25] for state estimation. The neural network

TABLE IV: REAL-WORLD FLIGHT RESULTS IN THREE TRIALS

Scene  Traj. Length (m) Travel Time (s) Avg. Vel. (m/s)
1 12.51 12.00 1.04
16.23 14.90 1.09
3 10.70 10.42 1.03

trained in simulations is deployed directly using ONNX-
Runtime for fast inference. We carry out the experiments in
a cluttered area of badminton court size, and we build three
different scenes to test our method. In each scene, the drone
takes off from one end of the area, traverses the obstacles
autonomously, and arrives at the other end. The process of
one trial is shown in Fig. 1, and the recorded data from the
three trials is presented in Table IV. The results demonstrate
our method’s ability to navigate the drone through complex
environments while satisfying dynamical constraints.

IV. CONCLUSIONS

This paper presented LIT-Planner, a motion planner that
initializes a trajectory with a neural network and further
improves it with spatial temporal optimization. The neural
network’s primary role is to provide initial values in both
spatial and temporal profiles. Compared to conventional opti-
mization techniques, the incorporation of the neural network
has demonstrated substantial reductions in computational
time while maintaining a comparable level of trajectory
quality. Furthermore, we presented a robust online planning
framework that exhibits tolerance towards planning latency
and decouples the planning and control frequencies. These
methods have been validated through real-world experiments,
affirming their practical utility and effectiveness.
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