
Learning-Initialized Trajectory Planning in Unknown Environments

Yicheng Chen1, Jinjie Li1, Wenyuan Qin2, Yongzhao Hua2∗, Xiwang Dong1,2, and Qingdong Li1

Fig. 1. A real-world demonstration of fully autonomous flight using the proposed Learning-Initialized Trajectory Planner (LIT-Planner). The
drone has no prior knowledge of the environment, and the entire software stack runs onboard in real-time. (a) Our quadrotor platform. (b) The map built
during the flight. (c1)-(c3) Three snapshots during the flight. (d1)-(d3) The corresponding depth images.

Abstract— Autonomous flight in unknown environments re-
quires precise planning for both the spatial and temporal
profiles of trajectories, which generally involves nonconvex
optimization, leading to high time costs and susceptibility to
local optima. To address these limitations, we introduce the
Learning-Initialized Trajectory Planner (LIT-Planner), a novel
approach that guides optimization using a Neural Network
(NN) Planner to provide initial values. We first leverage the
spatial-temporal optimization with batch sampling to generate
training cases, aiming to capture multimodality in trajectories.
Based on these data, the NN-Planner maps visual and inertial
observations to trajectory parameters for handling unknown
environments. The network outputs are then optimized to
enhance both reliability and explainability, ensuring robust per-
formance. Furthermore, we propose a framework that supports
robust online replanning with tolerance to planning latency.
Comprehensive simulations validate the LIT-Planner’s time
efficiency without compromising trajectory quality compared

This work was supported by the Science and Technology Innovation
2030-Key Project of “New Generation Artificial Intelligence” under Grant
2020AAA0108200, the National Natural Science Foundation of China under
Grants U2241217, 62103023, 61973013, 62103016, the Beijing Natural
Science Foundation under Grant 4232046, and the Young Elite Scientists
Sponsorship Program by CAST under Grant 2021QNRC001.

1 Y. Chen, J. Li, X. Dong, and Q. Li are with the School
of Automation Science and Electrical Engineering, Beihang Univer-
sity, Beijing 100191, China. {yicheng, lijinjie, xwdong,
liqingdong}@buaa.edu.cn

2 W. Qin, Y. Hua (*Corresponding author), and X. Dong are with
the Institute of Artificial Intelligence, Beihang University, Beijing 100191,
China. {wyqin, yongzhaohua, -}@buaa.edu.cn

to optimization-based methods. Real-world experiments further
demonstrate its practical suitability for autonomous drone
navigation.

Video: https://youtu.be/Vl5ZPjLziQI

I. INTRODUCTION

Spatial-temporal motion planning aims to generate
collision-free trajectories with refinement in both energy and
time. This has been a challenging problem for autonomous
drones in unknown environments because it is required to
precisely handle the complexity from both the environment
and the drone dynamics, while ensuring a real-time perfor-
mance for high-frequency replanning.

Optimization-based approaches [1]–[3] are considered as
one of the mainstream solutions, where the planning task
is formulated as an optimization problem that incorporates
different constraints and costs using one objective function.
However, the nonconvex nature of the optimization prob-
lem, owing to its high-dimensional variables and intricate
constraints, often results in convergence to local optima.
Furthermore, computational costs are highly sensitive to
the initial values used to initialize optimization [4], [5].
To provide a proper initial guess, a straightforward ap-
proach is to employ path planning methods such as A* [6]
or Rapidly-exploring Random Tree (RRT) [7] to generate
sparse waypoints for trajectory optimization. However, these
path planning methods do not consider drone dynamics,

ar
X

iv
:2

30
9.

10
68

3v
1

 [
cs

.R
O

]
 1

9
Se

p
20

23

https://youtu.be/Vl5ZPjLziQI

Supervise

Depth Image

Point Cloud

Mission

Planning
Initial State

Inertial
Feature

Visual
Feature

Integrated
Feature

Visual Backbone

Inertial Backbone Concatenate

Octomap Server

Octomap ESDF

NN-Planner

Gradient-
based solver

Spatial-Temporal
Optimization

Drone State

Planning
Target State

Velocity

Attitude

Environment

Expert
Planner

Observations Initialization Optimization

Tr
ai
n
in
g

D
ep

lo
ym

e
n
t

Trajectory

LIT-Planner

Sample 3 initial
configurations

ESDF Generator

(),Q t ()* *,Q t

()* *, Q t

()* *,Q t
Fig. 2. System Overview. The LIT-Planner leverages a neural network to generate high-quality initial trajectories from onboard observations and
subsequently conducts spatial-temporal optimization on the neural network’s output. The NN-Planner is trained using supervised learning, with training
cases provided by an expert planner based on a standard mapping-planning-control stack.

potentially resulting in unreasonable initial values for online
replanning. Additionally, the time required for these methods
makes them unsuitable for high-frequency replanning [8].
Another method involves the sampling of multiple initial
configurations, performing separate optimizations for each,
and retaining the best solution [9]. Nevertheless, this ap-
proach inevitably escalates planning costs linearly with the
number of initial configurations sampled, which is impracti-
cal for micro aerial robots with limited onboard computing
resources. Therefore, we need an approach to provide rea-
sonable trajectory initialization with minimal time cost.

On the other hand, learning-based approaches have gained
widespread attention in recent years due to the neural net-
work’s ability to model nonlinear mappings [10] and perform
fast inference [11]. Researchers have employed supervised
learning and reinforcement learning for various tasks, includ-
ing obstacle avoidance [12]–[14], flying in the wilderness
[15], formation flight [16], and autonomous racing [17], [18].
For instance, Tordesillas et al. [12] present a learning-based
method for perception-aware trajectory planning. However,
the proposed method assumes that the drone has perfect
knowledge of the obstacle’s trajectory, which leaves a gap for
real-world applications. Song et al. [13] perform hardware-
in-the-loop simulations on their learned policy, but the neural
network may experience failures, which requires an abrupt
takeover with a state-based controller. Loquercio et al. [15]
use a neural network to enable high-speed flight. However,
the method exhibits limited success rates in some cases
since the difficulties to ensure the trajectory’s temporal
consistency over a long time horizon. The challenge is then
how to generate reliable and explainable spatial-temporal
trajectories.

To address these limitations, we propose a learning-based
approach to initialize trajectories and further refine them
using an optimization approach. Several existing works have

employed neural networks to initialize trajectory optimiza-
tion for manipulator arms [4], [5] or mobile robots [19].
However, our research distinguishes itself from these studies
by the additional challenge of understanding unknown envi-
ronments in real time. In comparison to pure optimization-
based methods, our approach significantly reduces planning
time while maintaining trajectory quality. As opposed to end-
to-end learning-based methods, our approach benefits from
explainability due to the integration of optimization tech-
niques into the solution process. We outline the contributions
of this paper as follows:

• A Learning-Initialized Trajectory Planner (LIT-Planner)
that incorporates a Neural Network Planner into an
optimization-based approach to reduce planning cost
and provide explainable high-quality trajectories.

• A robust online trajectory planning framework that
enables autonomous flight in unknown environments
with tolerance to planning latency.

• A set of simulations and real-world experiments validat-
ing the efficiency of our method compared to existing
approaches and demonstrating its feasibility for real-
world applications.

II. METHODOLOGY

A. System Overview

Fig. 2 shows an overview of the system. We first parame-
terize the trajectories using MINCO representation (Section
II-B), where a polynomial trajectory is completely defined by
the variables (Q, t). The LIT-Planner performs spatial (Q)-
temporal (t) optimization (Section II-C) on the trajectories
with initial values generated by a NN-Planner (Section II-
E). The NN-Planner is trained using supervised learning. We
leverage a powerful yet computational-expensive expert plan-
ner (Section II-D) to provide the training data. In addition,
we inroduce an online replanning framework in Section II-F.

B. Trajectory Parameterization
We denote scalars in regular x ∈ R or X ∈ R, vectors

in bold lowercase x ∈ Rn, and matrices in bold uppercase
X ∈ Rn×m. In addition, we denote the time variable in t,
time points in ti, time intervals in ti := ti − ti−1, and then
ti =

∑i
j=1 tj . The coordinate system contains the world

frame {W} (ENU: X East, Y North, Z Up) and the body
frame {B} (FLU: X Forward, Y Left, Z Up). The geometric
variables are in the world frame if not specifically annotated.

We represent a D-dimensional M -piece t-indexed poly-
nomial trajectory p(t) through MINCO [3], a polynomial
trajectory class to perform a spatial-temporal deformation of
the flat output trajectory [20]:

TMINCO =
{
p(t) : [0, tM] → RD | C = C(Q, t),

Q ∈ RD×(M−1), t ∈ RM
>0

}
,

(1)

where C are trajectory coefficients, Q =
[
q1, · · · , qM−1

]
represent the intermediate waypoints, t =

[
t1, · · · , tM

]T
are

the time allocated for each piece, and tM is the total time.
Given a set of (Q, t), we can obtain a unique trajectory
of minimum control effort in polynomial form through
the mapping C(·). This mapping is achieved by solving a
boundary-intermediate value problem described in [3], which
returns the coefficients C = [CT

1 , · · · ,C
T
M]T with linear

time and space complexity. Based on (C, t), for a system of
S order integrator chain [3], a polynomial trajectory p(t) of
N = 2S − 1 degree can be defined as

p(t) =

p1 (t− t0) , if t ∈ [t0, t1)

· · ·
pi (t− ti−1) , if t ∈ [ti−1, ti)

· · ·
pM (t− tM−1) , if t ∈ [tM−1, tM)

, (2)

pi(t) = CT
i · β(t), ∀t ∈

[
0, ti

]
, (3)

where Ci = [ci,1, · · · , ci,D] ∈ R(N+1)×D is the coefficient
matrix of the ith piece, β(t) :=

[
1, t, · · · , tN

]T ∈ RN+1 is
the natural basis.

Based on the above parameterization, MINCO’s objective
H(Q, t) can be computed as

H(Q, t) := K = K(C(Q, t), t). (4)

For any second-order continuous cost function K(C, t),
we can compute ∂H/∂Q and ∂H/∂t from ∂K/∂C and
∂K/∂t [3], and use gradient descent to optimize the ob-
jective.

C. Spatial-Temporal Optimization
We construct the trajectory problem in the form of uncon-

strained optimization:

min
Q,t

K(C(Q, t), t) :=
∑
x

ωxKx, (5)

where subscripts x = {e, t, o, d} stands for Control Effort (e),
Trajectory Time (t), Obstacle Avoidance (o), and Dynamical
Feasibility (d). ωx are the weights for different costs.

The cost function Kx and its gradients are composed of
the cost and gradients of each trajectory piece:

Kx =

M∑
i=1

Ki
x, (6)

∂Kx

∂C
=

[
∂K1

x

∂C1

T

,
∂K2

x

∂C2

T

, . . . ,
∂KM

x

∂CM

T
]T

, (7)

∂Kx

∂t
=

[
∂K1

x

∂t1
,
∂K2

x

∂t2
, . . . ,

∂KM
x

∂tM

]T
. (8)

1) Control Effort Ke: The control effort and its gradient
of the ith piece trajectory can be written as

Ki
e =

∫ ti

0

∥∥∥p(S)
i (t)

∥∥∥2 dt, (9)

∂Ki
e

∂Ci
= 2

(∫ ti

0

β(S)(t) · β(S)(t)T dt

)
Ci, (10)

∂Ki
e

∂ti
=

D∑
j=1

cTi,j · β
(S)
(
ti
)
. (11)

2) Trajectory Time Kt: We minimize the total time of
the trajectory Kt =

∑M
i=1 ti. The gradients are given by

∂Kt/∂C = 0 and ∂Kt/∂t = 1M,1.
3) Obstacle Avoidance Ko and Dynamical Feasibility Kd:

The constraints for obstacle avoidance and dynamical feasi-
bility are time-integral constraints, which require sampling
on the trajectory to derive the associated penalties. We first
give the general form of time-integral constraints, then give
the specific forms of Ko and Kd. For the ith piece trajectory,
the penalty for violation of time-integral constraints can be
calculated as

Ki
x = Ki

x

(
Ci, ti, ki

)
=

ti
ki

ki∑
j=0

γj ·max

(
Jx

(
Ci, ti,

j

ki

)
,0

)3

,
(12)

Jx

(
Ci, ti,

j

ki

)
= Jx(p(t

′)), t′ =
j

ki
· ti, (13)

where x = {o, d}, ki is the number of points sam-
pled on the ith piece trajectory, (γ0, γ1, · · · , γki−1, γki

) =
(1/2, 1, · · · , 1, 1/2) are coefficients following the trapezoidal
rule [21]. The specific form of Jx(·) is related to the type
of constraints, which will be discussed below. The gradients
can be calculated by

∂Ki
x

∂Ci
=

∂Ki
x

∂Jx

∂Jx
∂Ci

, (14)

∂Ki
x

∂ti
=

Ki
x

ti
+

∂Ki
x

∂Jx

∂Jx
∂t′

∂t′

∂ti
, (15)

∂Ki
x

∂Jx
= 3

ti
ki

ki∑
j=0

γj max

(
Jx

(
Ci, ti,

j

ki

)
,0

)2

, (16)

∂t′

∂ti
=

j

ki
. (17)

To obtain Ki
x and its gradients for different types of time

integral constraints, we just need to construct Jx(·) for each
sampling point on the trajectory and calculate ∂Jx/∂Ci

and ∂Jx/∂t
′. Obstacle avoidance constraints and dynamical

constraints are analyzed respectively below.
3.1) Obstacle Avoidance Jo: We formulate the penalty

and its gradients using the Euclidean Signed Distance Fields
(ESDF). For every point on the map, the ESDF provides the
distance from this point to its nearest obstacle d(p(t′)) and
the gradient ∇d(p(t′)). Thus, Jo(p(t′)) can be defined as

Jo(p(t
′)) =

{
dthr − d(p(t′)), if d(p(t′)) < dthr

0, if d(p(t′)) ≥ dthr
. (18)

For Jo(p(t′)) > 0, the gradients can be calculated as

∂Jo
∂Ci

= −β(t′) · ∇d(p(t′))T , (19)

∂Jo
∂t′

= −∇d(p(t′))T · ṗ(t′). (20)

3.2) Dynamical Feasibility Jd: Here we imply constraints
on the maximum velocity on the trajectory as an example,
the principle of acceleration and higher-order dynamical
constraints is the same. Assuming that the maximum allowed
velocity is vm, we define

Jd = ṗ(t′)2 − v2m, (21)
∂Jd
∂Ci

= 2β̇(t′) · ṗ(t′)T , (22)

∂Jd
∂t′

= 2β̈(t′)T ·Ci · ṗ(t′)T . (23)

So far, for the trajectory optimization problem (5), we
have presented detailed approaches to calculate the costs and
gradients. We use L-BFGS to solve the problem. To avoid
nonpositive values of ti, we introduce a proxy variable τ and
modify ti as

ti =
tmax − tmin

1 + e−τi
+ tmin, i = 1, 2, . . . ,M. (24)

This establishes the mapping τi ∈ (−∞,+∞) → ti ∈(
tmin, tmax

)
, where tmax and tmin are the upper and lower

bounds of the duration of the ith piece trajectory that can be
set according to the users’ demand.

D. Expert Planner and Multimodality

To provide training data for the NN-Planner, we implement
an expert planner based on the optimization method [22]
presented in Section II-C. In each replanning of a flight,
it takes in the local initial state Sinit = [pinit,vinit]

T and
the target state Starget =

[
ptarget,vtarget

]T
, samples three

different initial trajectories (one straight line and two curves
that deform towards both sides based on the straight one),
performs optimization from each configuration, and outputs
the optimized result (Q∗, t

∗
) with the lowest objective.

The objective function of the optimization problem is
not in an analytical form, which introduces a nonconvex
nature to this problem and significantly influences both the
solution process and the quality of the resultant solution.

(a) Case 1 (b) Case 2 (c) Case 3
Fig. 3. Illustration of the multimodality in three cases of local planning.
In each case, the optimization of expert planner starts from three different
initial trajectories and converages toward different results.

TABLE I: TRAJECTORY COST AND COMPUTATION TIME OF

OPTIMIZATION STARTING FROM DIFFERENT INITIAL VALUES

Case Metric
Trajectory Color

Yellow Green Blue

Case 1 Trajectory Cost 12.91 12.93 14.75
Computation Time (s) 0.44 0.27 0.49

Case 2 Trajectory Cost 10.87 26.62 10.83
Computation Time (s) 0.23 0.26 0.32

Case 3 Trajectory Cost 12.76 12.59 11.90
Computation Time (s) 0.25 0.40 0.36

This sensitivity to the initial optimization value is illustrated
in Fig. 3, and its influence on both the quality of results and
the computational cost of the solving process is quantified in
Table I. These results intuitively demonstrate the necessity
of introducing a suitable initialization method.

E. Initialization: Neural Network Planner

To mitigate the influence of the aforementioned noncon-
vexity on trajectory optimization, the NN-Planner’s primary
purpose is to capture the potential high-quality trajectories
from raw sensory observations.

1) Structure: The NN-Planner takes in an observation

O = (I,Bvdrone,
W
B R,BSinit,

BStarget), (25)

where I ∈ R640×480 is the depth image, Bvdrone ∈ R3 is the
drone’s velocity in body frame, W

B R ∈ R3×3 is the drone’s
attitude (rotation from body frame to world frame), BSinit ∈
R2×3 and BStarget ∈ R2×3 are the local initial state and target
state in body frame, respectively.

We have developed a neural network tailored for pro-
cessing the given observation and producing the output
(BQ̂,B t̂). This observation encompasses both visual and
inertial information and is processed through two distinct
branches within the neural network, as illustrated in Fig.
2. For the visual information I , we utilize a pretrained
ResNet-18 [23] attached with a fully-connected layer to
generate the visual feature in R24. In the case of the inertial
information (Bvdrone,

W
B R,BSinit,

BStarget), we first flatten
each of these elements and concanate them to form a R24

vector. This vector is then processed by a four-layer per-
ceptron with [48, 24, 24] hidden nodes to extract the inertial
feature. Subsequently, the visual feature and inertial feature
are concatenated and passed through another four-layer-
perceptron with [48, 96, 96] hidden nodes to generate the

output vector. All multi-layer perceptrons employ the Leaky
ReLU activation function. Finally, the estimated (BQ̂,B t̂)
are derived from the output vector and transformed into the
world frame.

2) Data Acquisition and Training: We train the NN-
Planner using supervised learning. We use the expert plan-
ner to collect training data in a self-built simulation envi-
ronment, where each planning operation yields a training
data entry comprising O and the corresponding reference
output (BQ∗,B t

∗
) from the expert planner. We train the

NN-Planner using Mean Squared Error (MSE) as the loss
function and Adam [24] as the optimizer.

F. Online Replanning Framework

Autonomous flight in unknown environments requires
online replanning because of the limited perception horizon.
We design a robust online replanning framework that enables
tolerance to planning latency. Within this framework, the
planner maintains an evolving trajectory for the tracker to
follow, as outlined in Fig. 4.

In a replanning at time tx, the planner first selects the
local target state Starget and the local initial state Sinit. Starget
comprises a collision-free point pinit at a specific distance
ahead and a desired velocity vinit. For the local initial state,
the planner retrieves the state at tx+∆Tf along the existing
trajectory as Sinit, where ∆Tf is the foreseeing horizon.
The planner then generates a trajectory connecting them.
This newly generated trajectory supersedes the portion of the
existing trajectory beyond the time tx+∆Tf . After a interval
∆Tr comes the next round of replanning, and the existing
trajectory beyond the time tx +∆Tf +∆Tr is updated. The
replanning interval ∆Tr can be a constant value, typically
set as the upper bound of the estimated planning time, or
a variable value based on real-time measurements recorded
during each planning iteration.

This planning framework has two major advantages: 1)
Tolerance to planning latency: The tracker continually
accesses the real-time state of the trajectory, while the point
at which the trajectory is updated becomes accessible to the
tracker after the foreseeing horizon ∆Tf . Consequently, as
long as the planning process can be completed within the

x rt T+

xt x ft T+ ()t s

x f rt T T+ + ()t s

(ii) x rt t T= +

(i) xt t=

Generated before replanning (i)

Generated by replanning (i)

Generated by replanning (ii)

Current state

Local planning initial state

Local planning target state

Generated before replanning (i)

Generated by replanning (i)

Generated by replanning (ii)

Current state

Local planning initial state

Local planning target state

Fig. 4. Illustration of two consecutive replanning within the online
replanning framework.

∆Tf timeframe, the tracking operation proceeds seamlessly.
2) Decoupling between planning and control frequencies:
The tracking controller possesses the capability to publish
desired control commands at a very high frequency, inde-
pendent of the frequency at which the planner updates the
trajectory.

The feasibility of this framework is based on the following
assumption. In each planning, the portion of the newly
generated trajectory within the time window of ∆Tf is
dependable. This assumption remains reasonable, provided
that ∆Tf is not excessively extended.

III. EXPERIMENTS

In this section, we present the results of both simulations
and real-world experiments to evaluate the performance of
our algorithm.

A. Simulations

We perform simulations in Gazebo with PX4 software-
in-the-loop (SITL). We build three different scenes (poles,
forest, and bricks) to perform simulations. In each scene,
the drone flies using onboard observations without prior
information about the environment. The network in LIT-
Planner is deployed with ONNX-Runtime. The trajectory
tracking controller accesses the planned trajectory to obtain
the desired commands of position, velocity, and acceleration.
The desired yaw angle, as an additional degree of freedom,
is set tangential to the trajectory for perception-awareness to
the environments. These desired commands are published to
the PX4 controller at a frequency of 60 Hz. The parameters
used for the algorithms are summarized in Table II.

1) The Effectiveness of Neural Network: To verify the
effectiveness of neural network for initialization, we conduct
comparisons between the expert planner and the LIT-Planner,
and evaluate the performance using the following two met-
rics: 1) Average replanning time: In each run, the drone
performs dozens of replannning. The average replanning time
is defined as the arithmetic mean of all replanning time
within one run. This metric reflects the computational cost
of the planner. 2) Weighted cost: In each run, we record the
state of drone every 0.5 seconds. The weighted cost consists
trajectory length, penalties for obstacle collision (from (12),
(13), (18)), and violations of dynamical feasibility (from
(12), (13), (21)). The weights between them are set to
[1, 1, 1]. This metric reflects the quality of the trajectory.

We conduct ten repeated experiments for both the expert
planner and the LIT-Planner in each scene. Fig. 6 presents
the comparison results, demonstrating that the LIT-Planner
achieves similar trajectory quality while significantly reduc-
ing replanning time in comparison to the expert planner.

TABLE II: MAIN PARAMETERS OF THE PLANNERS

Parameter Value Parameter Value

M 3 tmin 0.5 s
D 2 tmax 5.0 s
S 3 ∆Tr 1.0 s

vmax 1.0 m/s ∆Tf 1.0 s
dthr 0.7 m Weights between costs [1, 1, 10000, 1]

(a) Poles (b) Forest (c) Bricks
Fig. 5. Three scenes for simulation comparisions. In ‘Poles’ and ‘Forest’, the target point is located 30 meters ahead of the starting point, in ‘Bricks’,
the target point is located 35 meters ahead of the starting point. The red curves show trajectories flown using LIT-Planner.

Poles Forest Bricks
Scene

30

32

34

36

38

40

42

W
eig

ht
ed

 C
os

t

Expert Planner
LIT-Planner

(a) Weighted cost

Poles Forest Bricks
Scene

0.0

0.2

0.4

0.6

0.8

Av
er

ag
e R

ep
lan

ni
ng

 T
im

e (
s) Expert Planner

LIT-Planner

(b) Average replanning time

Fig. 6. Comparison of the weighted cost and average replanning time.
LIT-Planner is able to generate trajectories of similar quality compared with
the expert planner, but with much less replanning time.

This underscores the effectiveness of the neural network in
providing reasonable initial trajectories.

2) Tolerance to Planning Latency: The proposed online
replanning framework (Section II-F) is designed to tolerate
planning latency owing to the foreseeing horizon ∆Tf .
To validate its effectiveness, we intentionally introduce an
additional planning latency of 0.8 seconds and conduct ten
repeated comparisions with and without (∆Tf = 0 s) the
foreseeing horizon in the three scenes, respectively. In each
run, we record the desired position and velocity commands,
as well as the actual position and velocity of the drone
every 0.1 seconds, and calculate the root-mean-square track-
ing error from the recorded data. We present the average
RMSE of the ten experiments in Table III, which proves the
incorporation of ∆Tf to be effective. In the absence of the
foreseeing horizon, the drone’s tracking performance falters,
as the current desired position may undergo abrupt changes,
making trajectory tracking more difficult, which is reflected
by a larger RMSE.

B. Real-World Experiments

For real-world experiments, we deploy the LIT-Planner on
a drone equipped with a NVIDIA Jetson Orin NX as com-
putational unit, an Intel RealSense D435 depth camera, and
a Holybro Kakute H7 mini flight controller. The drone runs
VINS-Fusion [25] for state estimation. The neural network

TABLE III: TRACKING ERROR COMPARISIONS WITH AND WITHOUT THE

FORESEEING HORIZON

Scene Metric
Average RMSE

∆Tf = 0 s ∆Tf = 1 s

Poles Position Error (m) 0.23 0.13
Velocity Error (m/s) 0.21 0.08

Forest Position Error (m) 0.28 0.16
Velocity Error (m/s) 0.26 0.12

Bricks Position Error (m) 0.21 0.10
Velocity Error (m/s) 0.19 0.07

TABLE IV: REAL-WORLD FLIGHT RESULTS IN THREE TRIALS

Scene Traj. Length (m) Travel Time (s) Avg. Vel. (m/s)

1 12.51 12.00 1.04
2 16.23 14.90 1.09
3 10.70 10.42 1.03

trained in simulations is deployed directly using ONNX-
Runtime for fast inference. We carry out the experiments in
a cluttered area of badminton court size, and we build three
different scenes to test our method. In each scene, the drone
takes off from one end of the area, traverses the obstacles
autonomously, and arrives at the other end. The process of
one trial is shown in Fig. 1, and the recorded data from the
three trials is presented in Table IV. The results demonstrate
our method’s ability to navigate the drone through complex
environments while satisfying dynamical constraints.

IV. CONCLUSIONS

This paper presented LIT-Planner, a motion planner that
initializes a trajectory with a neural network and further
improves it with spatial temporal optimization. The neural
network’s primary role is to provide initial values in both
spatial and temporal profiles. Compared to conventional opti-
mization techniques, the incorporation of the neural network
has demonstrated substantial reductions in computational
time while maintaining a comparable level of trajectory
quality. Furthermore, we presented a robust online planning
framework that exhibits tolerance towards planning latency
and decouples the planning and control frequencies. These
methods have been validated through real-world experiments,
affirming their practical utility and effectiveness.

REFERENCES

[1] J. Tordesillas and J. P. How, “MADER: Trajectory Planner in
Multiagent and Dynamic Environments,” IEEE Transactions on
Robotics, vol. 38, no. 1, pp. 463–476, Feb. 2022.

[2] X. Zhou, X. Wen, Z. Wang, Y. Gao, H. Li, Q. Wang, T. Yang, H. Lu,
Y. Cao, C. Xu, and F. Gao, “Swarm of Micro Flying Robots in the
Wild,” Science Robotics, vol. 7, no. 66, pp. 1–17, May 2022.

[3] Z. Wang, X. Zhou, C. Xu, and F. Gao, “Geometrically Constrained
Trajectory Optimization for Multicopters,” IEEE Transactions on
Robotics, vol. 38, no. 5, pp. 3259–3278, Oct. 2022.

[4] J. Ichnowski, Y. Avigal, V. Satish, and K. Goldberg, “Deep Learning
can Accelerate Grasp-Optimized Motion Planning,” Science Robotics,
vol. 5, no. 48, pp. 1–12, Nov. 2020.

[5] M. Yoon, M. Kang, D. Park, and S.-E. Yoon, “Learning-based Ini-
tialization of Trajectory Optimization for Path-following Problems of
Redundant Manipulators,” in 2023 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, May 2023, pp. 9686–9692.

[6] P. E. Hart, N. J. Nilsson, and B. Raphael, “A Formal Basis for the
Heuristic Determination of Minimum Cost Paths,” IEEE Transactions
on Systems Science and Cybernetics, vol. 4, no. 2, pp. 100–107, July
1968.

[7] S. M. LaValle and J. J. Kuffner, “Randomized Kinodynamic
Planning,” The International Journal of Robotics Research, vol. 20,
no. 5, pp. 378–400, May 2001.

[8] J. Gao, F. He, W. Zhang, and Y. Yao, “Obstacle-Aware Topological
Planning over Polyhedral Representation for Quadrotors,” in 2023
IEEE International Conference on Robotics and Automation (ICRA).
IEEE, May 2023, pp. 10 097–10 103.

[9] J. Tordesillas and J. P. How, “PANTHER: Perception-Aware
Trajectory Planner in Dynamic Environments,” IEEE Access, vol. 10,
pp. 22 662–22 677, Feb. 2022.

[10] J. Willard, X. Jia, S. Xu, M. Steinbach, and V. Kumar, “Integrating
Scientific Knowledge with Machine Learning for Engineering and
Environmental Systems,” ACM Computing Surveys, vol. 55, no. 4,
pp. 1–37, Apr. 2023.

[11] L. Brunke, M. Greeff, A. W. Hall, Z. Yuan, S. Zhou, J. Panerati, and
A. P. Schoellig, “Safe Learning in Robotics: From Learning-Based
Control to Safe Reinforcement Learning,” Annual Review of Control,
Robotics, and Autonomous Systems, vol. 5, no. 1, pp. 411–444, May
2022.

[12] J. Tordesillas and J. P. How, “Deep-PANTHER: Learning-Based
Perception-Aware Trajectory Planner in Dynamic Environments,”
IEEE Robotics and Automation Letters, vol. 8, no. 3, pp. 1399–1406,
Mar. 2023.

[13] Y. Song, K. Shi, R. Penicka, and D. Scaramuzza, “Learning
Perception-Aware Agile Flight in Cluttered Environments,” in 2023
IEEE International Conference on Robotics and Automation (ICRA).
IEEE, May 2023, pp. 1989–1995.

[14] N. J. Sanket, C. D. Singh, C. Fermüller, and Y. Aloimonos,
“Ajna: Generalized Deep Uncertainty for Minimal Perception on
Parsimonious Robots,” Science Robotics, vol. 8, no. 81, pp. 1–17,
Aug. 2023.

[15] A. Loquercio, E. Kaufmann, R. Ranftl, M. Müller, V. Koltun, and
D. Scaramuzza, “Learning High-Speed Flight in the Wild,” Science
Robotics, vol. 6, no. 59, pp. 1–16, Oct. 2021.

[16] G. Shi, W. Honig, X. Shi, Y. Yue, and S.-J. Chung, “Neural-Swarm2:
Planning and Control of Heterogeneous Multirotor Swarms Using
Learned Interactions,” IEEE Transactions on Robotics, vol. 38, no. 2,
pp. 1063–1079, Apr. 2022.

[17] Y. Song, A. Romero, M. Müller, V. Koltun, and D. Scaramuzza,
“Reaching the Limit in Autonomous Racing: Optimal Control Versus
Reinforcement Learning,” Science Robotics, vol. 8, no. 82, pp. 1–14,
2023.

[18] E. Kaufmann, L. Bauersfeld, A. Loquercio, M. Müller, V. Koltun,
and D. Scaramuzza, “Champion-Level Drone Racing Using Deep
Reinforcement Learning,” Nature, vol. 620, no. 7976, pp. 982–987,
Aug. 2023.

[19] S. Banerjee, T. Lew, R. Bonalli, A. Alfaadhel, I. A. Alomar, H. M.
Shageer, and M. Pavone, “Learning-based Warm-Starting for Fast
Sequential Convex Programming and Trajectory Optimization,” in
2020 IEEE Aerospace Conference. IEEE, Mar. 2020, pp. 1–8.

[20] D. Mellinger and V. Kumar, “Minimum Snap Trajectory Generation
and Control for Quadrotors,” in 2011 IEEE International Conference
on Robotics and Automation. IEEE, May 2011, pp. 2520–2525.

[21] W. H. Press, Numerical Recipes 3rd Edition: The Art of Scientific
Computing. Cambridge university press, Sept. 2007.

[22] L. Quan, L. Yin, C. Xu, and F. Gao, “Distributed Swarm Trajectory
Optimization for Formation Flight in Dense Environments,” in 2022
International Conference on Robotics and Automation (ICRA). IEEE,
May 2022, pp. 4979–4985.

[23] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for
Image Recognition,” in 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). IEEE, June 2016, pp. 770–778.

[24] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimiza-
tion,” in 2015 International Conference for Learning Representations
(ICLR). ICLR, May 2015, pp. 1–11.

[25] T. Qin, P. Li, and S. Shen, “VINS-Mono: A Robust and Versatile
Monocular Visual-Inertial State Estimator,” IEEE Transactions on
Robotics, vol. 34, no. 4, pp. 1004–1020, Aug. 2018.

	Introduction
	Methodology
	System Overview
	Trajectory Parameterization
	Spatial-Temporal Optimization
	Control Effort Ke
	Trajectory Time Kt
	Obstacle Avoidance Ko and Dynamical Feasibility Kd

	Expert Planner and Multimodality
	Initialization: Neural Network Planner
	Structure
	Data Acquisition and Training

	Online Replanning Framework

	Experiments
	Simulations
	The Effectiveness of Neural Network
	Tolerance to Planning Latency

	Real-World Experiments

	Conclusions
	References

