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Abstract—Path planning for Unmanned Aerial Vehicles
(UAVs), especially in three-dimensional environments with dy-
namic obstacles, is an active area of research. In recent years,
RRT-based algorithms have been attracting significant interest,
and various improvements are introduced to RRT to make it
applicable in such scenarios. Some methods leverage re-planning
mechanisms to avoid collision with the dynamic threats, however,
most of them fail to fully reuse historical information, hence hav-
ing limitations in saving the planning costs. This paper presents
Adaptively Dynamic RRT*-Connect (ADRRT*-Connect), a novel
RRT-based path planning algorithm that enables UAVs to fly
safely in three-dimensional environments with dynamic threats.
To improve efficiency in sampling new nodes, we propose a
strategy to automatically adjust the heuristic factor based on
feedback from the sampling results. For avoiding collision with
dynamic threats, we introduce a pruning-reconnecting mech-
anism to repair the path when new obstacles emerge. Our
approach is economical in the consumption of tree nodes. In
comparison to existing benchmarks, simulations have shown that
our proposed algorithm only requires 3.5% new nodes to repair
the path in re-planning.

Index Terms—Unmanned Aerial Vehicle, Path Planning,
Rapidly-exploring Random Tree, Dynamic Environment

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) have been attracting
growing research interests due to their wide applications on
areas including photography, delivering [1], mapping [2], and
mobile edge computing [3]–[5], etc. As the operating range
of UAVs gradually extends to lower altitudes with complex
surroundings, dense obstacles and dynamic threats from three-
dimensional environments may pose challenges to the safety of
UAVs. Path planning aims at finding a path from the start point
to the goal point while protecting the UAVs from collision with
the obstacles [6]. Accordingly, how to perform dependable
path planning for UAVs emerges as an topic worth discussion.

Various path planning methods have been proposed to solve
the above issue such as A* algorithm [7], Artificial Potential
Field [8], and Probabilistic Roadmaps [9]. Among diverse path
planning methods for UAVs, Rapidly-exploring Random Tree
(RRT) [10]—a sampling-based search algorithm—attracts con-
siderable attention. Compared with other algorithms, RRT
has advantages for it seldom falls into local optimum and
it does not require discretization of the configuration space
[11], which makes it an ideal algorithm for three-dimensional

path planning for UAVs. Since RRT was proposed [12], there
have been many related advances. For example, J.J. Kuffner
[13] improves the efficiency of RRT by incrementally building
two rapidly-exploring random trees rooted at the start and
the goal configurations. C. Urmson [14] utilizes a heuristic
quality function to guide the search which improves the speed
of finding a path. Sertac Karaman proposes RRT* [15], the
first asymptotically optimal RRT which analyzes the behavior
of the cost of the solution returned by stochastic sampling
and applies modification on the random tree generated. More
extensions and improvements have been presented in [16]–
[20].

Most previous variants of RRT cannot be directly used in
dynamic planning, however, in real-world scenarios informa-
tion about the environment is often incomplete and updated
with time. When UAVs encounter emerging obstacles, to avoid
collision, a straightforward approach [21], noted as traditional
re-planning method, is to regard the changed surroundings as
brand-new, discard the old trees and re-run a full planner.
This method, ignoring the historical information obtained in
previous planning, tends to be computationally-expensive for
it often takes many samples before finding a feasible solution.
Therefore, there is an interest in developing algorithms that
reduce the cost of re-planning through information reuse. To
address such problem, Olzhas Adiyatov proposes RRT*D [21],
which retains the useful part of the tree after a dynamic
obstacle breaks the solution path. The key idea of RRT*D is
to remove only part of the nodes and try to repair the broken
path instead of re-generating a whole path. Although RRT*D
greatly reduces the computational cost, its unidirectional re-
connecting mechanism limits its efficiency.

Aiming at addressing drawbacks in existing approaches,
we propose Adaptively Dynamic RRT*-Connect (ADRRT*-
Connect) to advance research in path planning for UAVs
in three-dimensional environments with dynamic obstacles.
ADRRT*-Connect applies an adaptive sampling strategy to
automatically guide the growth of the random tree, thus im-
proving the efficiency of the heuristic. A bidirectional growth
and reconnecting mechanism allows ADRRT*-Connect to effi-
ciently reuse previous search efforts in re-planning. Therefore,
ADRRT*-Connect requires fewer samples before finding a
feasible solution compared with current re-planning methods.
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II. RELATED WORK

A. Static planning algorithm

The basic RRT explores the configuration space by growing
a tree rooted at the start node pinit, as is visualized in Figure 1.
At each step, RRT randomly chooses a point prand within the
configuration space and tries to grow the tree towards prand
by a distance ∆p. If the growth is not baffled by obstacles, a
new node pnew is added to the tree. This process is repeated
until the tree touches the goal point pgoal.

Obstacle

Fig. 1. RRT expands a new node.

RRT*, extending RRT to provide almost-surely asymptot-
ically optimal solutions, uses Extend* to grow the tree,
as is shown in Algorithm 1. When a new node pnew is
added to tree T , nodes within a certain area from pnew are
selected as Pnear, then ReselectParent and Rewire are
performed to optimize the connection. ReselectParent
selects the best parent for pnew. Then Rewire examines
each pnear ∈ Pnear, and re-sets pnear’s parent to pnew by
SetParent if such change can reduce the path cost from
pinit to pnear.

Algorithm 1 Extend*
1: Function Extend*(T, prand)
2: pnearest ← Nearest(T, prand)
3: pnew ← Steer(pnearest, prand)
4: if ObstacleFree(pnew, pnearest) then
5: if DisCost(pnew, pgoal) < threshold then
6: pnew ← pgoal
7: T ← addVertex(T, pnew)
8: Flag ← Reached
9: T ← addVertex(T, pnew)

10: Pnear ← findNeighbor(T, pnew, r)
11: T ← ReselectParent(T, pnew, Pnear)
12: T ← Rewire(T, pnew, Pnear)
13: Flag ← Advanced
14: end if
15: Flag ← Trapped
16: end if
17: Return Flag

Since RRT* first achieves asymptotically optimal, later
researches [20], [22] focus on improving the speed of finding
the initial solution and converging towards the optimum.
Of various improvements, one representative advance is the
conversion of unidirectional search to bidirectional search,

such as RRT*-Connect [23]. RRT*-Connect combines the
ideas of RRT* and RRT-Connect. It uses two separate trees
Ta and Tb initialized respectively at the start and goal states.
If an extend step is valid and a new node pnew is created,
the algorithm tries to grow the other tree towards the newly
generated node until the growth is baffled by obstalces, as is
shown in Algorithm 2. RRT*-Connect alternately grows two
trees towards each other, hence finds paths more quickly than
RRT*.

Algorithm 2 Connect*
1: Function Connect*(T, ptarget)
2: while Extend*(T, ptarget) = Advanced do
3: Extend*(T, ptarget)
4: end while
5: if Flag = Reached then
6: σ ← ConnectTree()
7: end if

B. Dynamic re-planning algorithm

RRT*D [21] is a highly efficient path planning algorithm
which can be used in dynamic environments. It aims at
saving the re-planning cost. Traditional re-planing methods
discards the whole old trees, consequently loses information
including results from obstacle collision detection routines
and exploration of the configuration space by the tree. Thus,
RRT*D tries to reuse such information.

As shown in Algorithm 3, initially, RRT* is executed, and
tree T and path σ are generated. Afterwards, the UAV starts
to move, and it’s current position pcurrent is synchronously
updated. If an obstacle is detected to break any path segment
from pcurrent to pgoal, as is shown in Figure 2, the movement
is temporarily suspended, then comes the re-planning process,
which is the key part of the algorithm. SelectBranch
discards the nodes from pinit till pcurrent and their offspring,
thus creating a subtree rooted at pcurrent, which is called
Tparent. ValidPath focuses on the previous solution path
and removes all the nodes colliding with the obstacle and their
offspring, as a result, retains the usable part of the solution path
connected to pgoal. This part is named σseparate, starting at
pseparate and ending at pgoal. In Regrow, Tparent grows until
connecting with σseparate, then the broken path is repaired.

When evaluating the reconnecting mechanism of RRT*D, it
is quite natural to find out that it has two main limitations:

• The reuse of valid information is not sufficient. When
discarding nodes, the previous tree structure is only half
retained: The first half of the tree (pcurrent till obstacle)
is retained, however, the last half of the tree (obstacle
till pgoal) is almost totally abandoned, only the last half
of the path σseparate is retained. Namely, the exploration
information of the last half of the tree is mostly lost.

• The growing strategy of the tree is relatively less efficient.
Compared with bidirectional searching algorithms such
as RRT-Connect, RRT*D uses a rather inefficient grow
strategy to lead the growth of the tree, which results in
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Fig. 2. Visual illustrations of the three key functions in RRT*D.

Algorithm 3 RRT*D
1: T, σ ← RRT*(pinit)
2: pcurrent ← pinit
3: InitMovement()
4: while pcurrent ̸= pgoal do
5: D ← UpdateObstacles()
6: if DetectCollision(σ, pcurrent) then
7: StopMovement()
8: T ← SelectBranch(T, pcurrent)
9: pseparate, σseparate ← ValidPath(σ)

10: T ← Regrow(T, pseparate)
11: σ ← SolutionPath(T, pcurrent)
12: ResumeMovement()
13: end if
14: pcurrent ← NextNode(σ)
15: end while

more computational cost both in the initial grow phase
and the regrow phase.

Based on the analysis of these baseline algorithms, RRT*-
Connect is highly efficient in growing the tree but cannot be
directly used in dynamic re-planning, while RRT*D provides a
cost-saving strategy for re-planning against emerging obstacles
but is limited in efficiency due to its reconnecting mechanism.

Inspired by these algorithms, we introduce a highly efficient
reconnecting mechanism, and propose a novel adaptive sam-
pling strategy, thus form a path planning algorithm which can
be used in dynamic environments. We name the proposed
algorithm as Adaptively Dynamic RRT*-Connect (ADRRT*-
Connect).

III. ADAPTIVELY DYNAMIC RRT*-CONNECT

A. Adaptive sampling

Sampling is the key procedure of RRT and its variants.
There is no heuristics in RRT when expanding new node. In
algorithms like Goal-bias RRT [14], heuristics are introduced
to the process of expanding new node: When sampling in
the configuration space, the probability of directly sampling
the goal point (this behavior is noted as greedy sampling)
is ϵ and the probability of randomly sampling is (1 − ϵ). ϵ
is the heuristic factor and is constant in current algorithms.
We introduce sigmoid function and use y(x) instead of the
constant factor ϵ, and propose a mechanism to adaptively
adjust y(x) based on feedback from the results of tree growth,
thus form the idea of adaptively sampling. The corresponding
pseudocode is shown in Algorithm 4 and 5. In Algorithm
4, GreedyProbability corresponds to the function y(x),
which is

y(x) =
1

1 + ex
. (1)

Algorithm 4 AdapSample
1: Function AdapSample(x)
2: ϵ← GreedyProbability(x)
3: if rand(1) < ϵ then
4: prand ← GreedySample()
5: SampleType← Greedy
6: prand ← RandomSample()
7: SampleType← Random
8: end if
9: Return prand, SampleType

In order to adaptively adjust y, we set the following rule
to adjust x (line 10-19 in Algorithm 5): Each time we apply
greedy sampling in tree expansion, if there are no obstacles
between the newly-sampled node and the nearest node, we
increase x by ∆x, otherwise we decrease x by ∆x. ∆x is a
hyperparameter and is set empirically. The motivation is that
if a greedy sampling is successful, it means that there are no
obstacles between the nearest node and the goal point, and thus
the probability of greedy sampling is supposed to be increased
so as to reach the goal point as soon as possible or hit an
obstacle and thus bypass it.

The above mechanism uses the results of the tree growth to
automatically adjust x. x is initialized as 0 in each mission.
There are two main advantages of using sigmoid function to
map x to y:

• The sigmoid function converts x, which range is
(−∞,+∞), to y, which range is (0, 1) and can be used
as a probability of an event.

3
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Algorithm 5 ARRT*-Connect
1: Function ARRT*-Connect(Ta, Tb)
2: if isempty(Ta) then
3: Ta ← InitTree(pinit)
4: end if
5: if isempty(Tb) then
6: Ta ← InitTree(pgoal)
7: end if
8: while Attempts ≤MaxAttempts do
9: prand, SampleType← AdapSample(x)

10: if Extend*(Ta, prand) ̸= Trapped then
11: if SampleType = Greedy then
12: x← x+∆x
13: end if
14: Connect*(Tb, pnew)
15: if SampleType = Greedy then
16: x← x−∆x
17: end if
18: end if
19: Swap(Ta, Tb)
20: end while
21: Return Ta, Tb, σ

• y can react to the changes of x with different sensitivity
at different stages of tree growth. When x is near to 0,
the value of y is sensitive to the change of x, when x
gains a large absolute value, y tends to saturate, i.e., y
is relatively insensitive to change of x. Such adaptive
sensitivity is proved to guarantee more efficient sampling.

The effectiveness of adaptively sampling is validated by
simulation in Section IV.

B. Pruning-reconnecting mechanism

In order to apply RRT-based algorithms in dynamic envi-
ronments where there are emerging obstacles, we propose a
pruning-reconnecting mechanism to flexibly guide the growth
of the random tree, as is shown in Algorithm 6.

Algorithm 6 ADRRT*-Connect
1: Ta, Tb, σ ← ARRT*-Connect([ ], [ ])
2: pcurrent ← pinit
3: InitMovement()
4: while pcurrent ̸= pgoal do
5: D ← UpdateObstacles()
6: if DetectCollision(σ, pcurrent) then
7: StopMovement()
8: Ta ← RemoveNodes(Ta, pcurrent)
9: Tb ← RemoveNodes(Tb, pgoal)

10: Ta, Tb, σ ← ARRT*-Connect(Ta, Tb)
11: ResumeMovement()
12: end if
13: pcurrent ← NextNode(σ)
14: end while

If emerging obstacles break the path, RemoveNodes is
executed. This function deletes the nodes and their offspring
in the tree which are in collision with the obstacles. Thus
Ta and Tb are pruned. By doing this, the useful information
in the two trees are retained as much as possible. After
RemoveNodes is executed, the broken path can be repaired
by ARRT*-Connect, as detailed in III-A. The workflow of
ADRRT*-Connect is depicted in Figure 3.

Start

New obstacle emerged
and broke the path?

Run ARRT*-Connect
and get the initial path

UAV moves one unit
distance along the path

Prune the two trees and
use ARRT*-Connect to

reconnect the path

UAV moves one unit
distance along the path

Get to the target point?

End

Yes

Yes

No
No

Fig. 3. Workflow of ADRRT*-Connect.

The comparison of ADRRT*-Connect and RRT*D is illus-
trated in Figure 4. The proposed ADRRT*-Connect differs
from RRT*D in the three following aspects:

• Our proposed algorithm leads a bidirectional growth of
two trees simultaneously, as is shown in step 1, while
RRT*D grows only one tree from the start point towards
the goal point. Our bidirectional growth mechanism guar-
antees faster planning speed.

• When emerging obstacles break the path, as demonstrated
in step 2-3, our proposed algorithm deletes the tree nodes
that collide with the obstacles, whereas in the same
circumstance RRT*D deletes more nodes (the grey ones).
Our algorithm reuses more historal information.

• When reconnecting, as is shown in step 4, in our algo-
rithm, the path can be rebuilt as soon as the two trees
join together. However, in RRT*D, the first half of the
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tree must connect to the remained path on the right. Such
unidirectional search is less efficient.

1

2

3

4

Start Start

Target Target

Obstacle

Proposed RRT*D

Obstacle

Fig. 4. The comparison of our proposed algorithm and RRT*D.

IV. SIMULATION AND DISCUSSION

When applying a path planning algorithm for a real-world
object like a UAV, the general approach to perform the
collision check is to inflate the obstacles, regard the UAV as
a volumeless point, and examine the interaction of the point
and the expanded obstacles. In the following simulations, the
obstacles are regarded as inflated so that we can treat the UAV
as a volumeless point.

The simulation conditions for the series of experiments are
set as follows: In a three-dimensional map with a size of
100 × 100 × 100, a series of static obstacles are distributed,
as is visualized in Figure 5(a). When the simulation starts,
an initial path is first generated, and then the UAV starts
to move. During the movement of the UAV, five dynamic
threats will arise one after another. Figure 5(c) shows the
map where all five dynamic threats have emerged. The UAV
cannot anticipate the geometric information of the obstacles.
After one threat appears, the UAV immediately obtains the
geometric information of the obstacle, and the obstacle will no
longer change location. Due to the emergence of five dynamic
threats, the UAV may perform 0-5 re-planning in one mission:
When the initial path does not conflict with all 5 dynamic
obstacles, there is no need to perform re-planning. Whenever
an obstacle breaks the current path, a re-planning is executed.
The UAV follows the initial solution of each re-planning and
moves at a constant speed across the whole mission. The time
consumption of getting the initial solution path is negligible.

A. Path planning in dynamic environments

A straightforward demonstration of a mission with five
times of re-planning is presented in Figure 6. This figure shows
that our proposed algorithm is able to perform dependable
path re-planning in environments with dense static obstacles
and dynamic threats. Each time a new obstacle appears and

(a) The initial map (b) Top view of the initial map

(c) The final map (d) Top view of the final map

Fig. 5. Illustrations of the initial map and the map where all dynamic obstacles
have emerged. Markers 1-5 represent the order in which the obstacles appear.

breaks the current path, ADRRT*-Connect is able to repair
the path and guide the UAV to continue to move towards the
goal point.

B. Effectiveness of adaptive sampling

The planning cost is reflected in two aspects, the sampling
times (number of attempts) and the sampling success rate. We
define the sampling success rate η as the ratio of number of
tree nodes to total sampling times. A larger η means more
efficient sampling because it costs fewer times of attempts to
build a tree of the same scale compared with a smaller η.

To verify the effectiveness of the adaptive sampling pro-
posed in section III-A, we compare the planning results from
ADRRT*-Connect when the adaptive mechanism is enabled
and disabled separately. In the group where adaptive sampling
is enabled, x is initialized as zero and ∆x is set to 0.3.
In the group where adaptive sampling is disabled, ϵ ≡ 0.5.
In the same condition, 1000 independent replicate tests are
carried out separately for each group. Figure 7 shows the
comparison of planning results when adaptive sampling is
enabled and disabled. We notice that, except for the first re-
planning, the adaptive mechanism allows our algorithm to
use fewer sampling tries while achieving a higher sampling
success rate. On average, when adaptive sampling is applied,
ADRRT*-Connect requires 6.7% fewer times of sampling
and produces 7.3% greater sampling success rate than that

5
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(a) (b) (c)

(d) (e) (f)

Fig. 6. The whole procedure of a mission in which five re-planning are executed. (a) First re-planning. (b) Second re-planning. (c) Third re-planning. (d)
Fourth re-planning. (e) Fifth re-planning. (f) Final results. The yellow five-pointed star marks the start point and the magenta six-pointed star marks the goal
point. The white arrow marks the newly emerged obstacle each time. The initial path is in white dotted line and the final path is in yellow line. In each
re-planning, the updated path is plotted in red, magenta, cyan, green, and black, respectively.
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Fig. 7. Planning results comparison of ADRRT*-Connect when adaptive
sampling is turned on and off separately.

without adaptive sampling. Such reduction in sampling times
means that the adaptive mechanism is conducive to less

computational burden, which is of vital significance in real-
world scenarios because on-board computers are often limited
in processing resources. The effectiveness of the proposed
adaptive mechanism is verified.

C. Comparison of re-planning cost

In re-planning, the number of newly sampled tree nodes is
an important metric to evaluate the re-planning efficiency. The
fewer the new nodes, the better the exploitation of existing
information. To verify the advantages of ADRRT*-Connect
in terms of re-planning efficiency, We compare ADRRT*-
Connect, RRT*D [21], and the traditional re-planning algo-
rithm [21] in the same scenario. Due to the random factor’s
influence in the algorithms, 1000 independent replicate trials
were performed for each algorithm, and the average number
of new nodes in the random tree at five re-planning periods
was calculated for each algorithm. The comparison results of
the three algorithms are shown in Table I.

In Table I, each row is the average result of 1000 indepen-
dent replicate trials. Based on the results, with our proposed
ADRRT*-Connect, whenever the dynamic threat breaks the
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TABLE I
NUMBER OF NODES REQUIRED IN FIVE TIMES OF RE-PLANNING WITH
TRADITIONAL RE-PLANNING METHOD, RRT*D AND OUR PROPOSED

ALGORITHM

Obstacle Traditional re-planning method RRT*D Proposed
1 84 135 14
2 119 203 12
3 69 560 22
4 250 426 22
5 538 1086 13

Average 212 482 17

current path, the random tree only needs to add a modest
number of new nodes to restore the connection. This feature
benefits from the sufficient re-use of historical information
in the pruning-reconnecting mechanism. On average, the pro-
posed algorithm only costs 3.5% of new nodes compared with
RRT*D, indicating that our approach builds a much lighter
tree and consumes less memory compared with the baseline
algorithms. The effectiveness of our approach is clear.

V. CONCLUSION

In this paper, we introduce ADRRT*-Connect, a novel
path planning algorithm for UAVs against dynamic obstacles
in three-dimensional environments. To break the limitations
of existing algorithms that information reuse is insufficient,
we make the following two enhancements to further related
research: (1) We offer an adaptive sampling approach in which
the heuristic factor is dynamically adjusted based on feedback
from the sampling outcomes. (2) We design a highly efficient
pruning-reconnecting mechanism to repair the path when new
threats appear, ensuring the safety of the UAVs. Simulations
have proved that, with these improvements, our proposed
algorithm achieves higher sampling efficiency and costs only
3.5% new nodes when re-planning compared with existing
approaches. We have introduced an adaptive mechanism to
the process of sampling new nodes. And there still could
be some work worth doing on this research in the future.
Later researchers, for example, can explore more adaptive
mechanisms in different stages of the planning process, such
as adaptively adjusting the growth direction or the step length
of the random tree.
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